共 3条 发电预测模型
论文

基于最小二乘支持向量机的电站锅炉高效率低NO x 的多目标优化研究

发布日期:2023-12-28

针对锅炉燃烧系统的多目标优化,在所建立的锅炉燃烧系统预测模型的基础上,分别采用加权-粒子群算法和多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法优化锅炉系统的可调整运行参数,以实现锅炉高效率低NO x 排放。分析表明,2种优化算法所得的运行参数相近,趋势与燃烧特性分析和燃烧调整试验结果相符合,说明智能算法优化电站锅炉燃烧系统有效可行。但是加权-粒子群优化算法主观依赖性严重,难以选取合适的权值,优化时间长且结果少;而MOPSO算法优化时间远远小于加权-粒子群算法优化时间,并且优化结果更多,优化效率更高,更有利于指导锅炉的实际运行。

471次浏览
论文

基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测

发布日期:2024-03-12

为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(long short term memory-gated recurrent unit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。

论文

基于长短期记忆网络数字孪生体的短期光伏发电预测

发布日期:2023-12-13

光伏发电功率的预测对电网稳定以及安全地运行有重要意义,提出一种基于长短期记忆网络(long short term memory ,LSTM)数字孪生体的预测模型,通过数字孪生体模型实现光伏发电功率的精准预测。数字孪生体分为物理空间与数据空间,首先根据物理空间得到的气象孪生数据由LSTM算法获取初步的预测功率,同时更新历史气象数据库。然后在气象数据库中找到相似日,对比相似日的预测功率和实际功率,对初步的预测功率进行误差修正,得到最终光伏功率预测值。文中所提的数字孪生体实现了物理实体与数据驱动的连接,同时物理实体可进行自我学习和更新,因此相较于传统的光伏预测结果更为精确,通过仿真算例进一步证实数字孪生体预测的准确性。

296次浏览

热点资讯

1

《电力行业关键设备供需统计分析报告2023》上新了!

2

2023年变电智能运检优秀论文征集

3

EPTC双周刊

4

“EPTC智巡榜”年度优秀企业征集

5

“双碳”目标下的低压智能配电台区应用设计

6

2023年EPTC大事记

7

电力绝缘子40年技术回顾与展望——制造篇

8

关于举办2023年(第六届)电力信息通信新技术大会暨数字化发展论坛的通知

9

电线电缆产品质量国家监督抽查实施细则(2022年版)发布

10

新型电力系统中抽水蓄能定位与发展前景