湖南株洲白关220kV“多站融合” 智慧能源站创新成果介绍
株洲白关220kV“多站融合”智慧能源站是湖南首个220kV智慧能源站项目,也是国网公司泛在电力物联网建设的重要试点示范工程,融合了传统变电站、数据中心站、综合能源站(储能、分布式光伏、充电站)等多种元素,实现“两网融合、三流合一、一体化运营”。同时,智慧能源站秉持“创新、融合、绿色、共享”建设原则,以变电站为核心,采用“1+N”模式,构建能源流、业务流、数据流“三流合一”的泛在物联网典型应用场景。在“三站合一”的基础上,通过根植能源互联网,服务社会智能化,探索创建能源共享经济新业态。本项目提出交直混联微网、哑铃型平面布置、全站一体化平台、立体消防、全元素机房5大创新亮点、40项设计优化措施,完成专题报告41余册。
低功耗无线传感网电力应用现状与发展报告
本书围绕电力无线传感网技术创新应用,聚焦于低功耗无线传感网在发电、输电、变电、配电、用电等电力行业领域的应用,具体包括电力发电厂监测区域的事故预警、环境状态判断、劣化趋势分析,输电线路的电力巡检和运维管理,变电站内电力设备的运行状态、环境状态等在线监测,配电领域储能和配电自动化业务的监控和故障定位系统,用电采集和精准负荷控制业务的监测和分析管理等。介绍了无线传感网及其产业发展现状,概述了无线传感网主流技术,总结提炼了电力无线传感网在电力领域的应用情况,分析研究了电力无线传感网的应用价值和挑战,探讨提出了电力无线传感网技术应用发展趋势及建议。 无线传感网是大量的静止或移动的传感器节点以自组织和多跳的方式构成的无线网络,可以感知、采集和处理信息,并将获得的详尽信息发送给需要的用户。 “十四五”期间,国家电网有限公司服务新型电力系统构建需求,将“全力推进电力物联网高质量发展”作为重点工作任务之一,其中的各项工作部署均离不开无线传感网的支撑。无线传感器网中众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等。潜在的应用领域可以归纳为军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。新型电力系统的一些重要的、需要被监控的设备上可以安装传感器,实时监控设备的运行状况。采用无线传感网络技术,将监测到的重要参数上传到集中处理平台,智能电力系统可以根据参数的变化,及时发现设备故障等,主动预防可能发生的各种事故。 与传统有线网络相比,无线传感网络具有很明显的优势,主要有:低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。无线传感网给电力行业带来应用价值的同时,也面临着极大的挑战。通用无线传感网技术无法满足某些特定的业务需求,变电站、输电线路等某些复杂的电力现场环境对于功耗控制、传输距离、组网灵活性等方面有特定需求,需要结合电力物联网的业务需求和应用场景来实现功耗和连接性能的协同优化;在终端接入和数据传输方面,设备和数据量均呈爆发式增长,海量数据给电力物联网带来了资源和数据传输带宽的压力;传感节点大多布置在户外环境中,恶劣环境和网络攻击均影响传感节点的运行和信息传递,因此,提升终端接入安全和抗干扰能力是保证电力物联网健康发展的重要基础;传感器小型化、无源化技术有待突破,利用电网沿线的磁场、电场、振动及温差等外部条件,实现微源取能是关键难点。为此,电力企业需要弥补现有的不足和短板,结合电力行业发展战略,研究低功耗无线传感网的网络与安全连接技术,全方位地提高感知数据的颗粒度、广度和维度,并持续积极探索基于人工智能的知识赋能、5G通信技术、基于边缘计算的技术、数据开发服务技术等方面融合发展。 联系人:陈姗姗 手 机:13261508443 邮 箱:chenshanshan@eptc.org.cn
电力结构设计专家系统SmartPPDS
在火力发电领域,传统土建专业与工艺专业协同配合主要以二维配合为主。土建专业与工艺专业根据司令图,独立分别工作。土建专业先使用结构分析软件计算初版结构模型,并绘制CAD结构图纸,提出资料交给工艺专业。工艺专业工程师根据管道布置选型初算结果,给结构专业提出修改意见并在CAD图纸上手动增加工艺荷载。结构专业接收后在计算分析模型中更新荷载和布置,流程再循环。此流程端是双方专业在提出资料前交互较少,资料交互后发现问题会导致双方各专业较大的返工量。工艺专业提资图需要结构专业提资后手绘,进度慢且容易出错。积累版本多后,容易引起管理混乱,导致土建专业输入工艺荷载漏项。 电力结构设计专家系统SmartPPDS主要创新点如下:1、首次实现PDMS模型与土建gen计算模型双向局部更新而不丢失相应属性信息,实现模型一键更新。避免了工程师重复建模工作量,保持版本唯一性。2、首次提出预布梁概念,并应用于软件中。软件赋予工艺专业预布梁权限,由工艺专业在PDMS提预布梁位置,由土建结构专业接收确认调整,实现了工艺需求快速响应。3、首次将最新版《火力发电厂土建结构设计技术规程》DL5022-2012工况及荷载组合内置于软件,由软件根据需要自动生成需要的荷载组合。这种方法工况更加细致,准确性得到极大的提高,大大减轻了土建专业编辑荷载组合、荷载工况的工作量。4、创新设计流程。PDMS作为布置设计平台,由传统二维设计提资方式变为基于PDMS模型可视化提资,专业之间配合更加高效直观,减轻了专业内部外部的工作量,极大的提高了设计工程师的劳动生产率。5、首次研制出三维数字化流程管理。根据工艺提资土建受资流程,工艺提资分别设提资、校审、复核人,土建设主设接收人,并将提资数据分配给卷册负责人。各流程结束,自动推送到下一流程人,方便快捷。同时,对过程文件归档记录,加强了过程控制,提高了可追潮性。
抽水蓄能电站施工总布置规划专题报告编制规程
南方电网一二次融合技术成果与应用介绍
近年南方电网公司全力推进数字电网建设,在配网领域也将配网一二次设备标准化、模块化和融合作为配网数字化建设重点工作之一。为了加强配网主要设备本体的状态感知和装备运行环境的监测,主要针对柱上开关、环网柜、变压器等关键设备,设计一二次深度融合传感器配置与布置方案,并按照结构集成化、功能模块化、接口标准化、易于检修运维等要求开展配电一二次装备深度融合设计与优化。同时,针对配电网一二次融合装备智能运维要求,开展配电网融合监测信息筛选和布点优化,提出设备智能诊断方法和区域配电网状态评估方法,最终实现一二次融合装备“一键运维”和区域配电网“一键管控”的智能分析诊断和智能辅助决策目标。
考虑电压-无功调节的台区互联装置规划方法
伴随分布式能源广泛接入低压配电网,其对配电网运行灵活性和消纳能力的要求不断提高。利用低压柔性互联装置将独立运行的低压配电台区分区互联,避免传统电压调节和无功补偿装置频繁动作。考虑到柔性互联装置造价昂贵,协同传统电压-无功调节装置,文中提出低压柔性互联装置的选址定容规划方法。首先,分析低压柔性互联装置拓扑和运行方式,建立其潮流模型。其次,建立低压柔性互联装置优化配置的双层规划模型,上层规划以年综合费用最小为目标,下层规划考虑电压-无功协调控制时间序列模型,以运行成本和电压偏差最小为目标,基于粒子群优化算法和混合整数二阶锥规划算法交替求解,得出配电系统最优柔性互联方案和最优运行方式。最后,在IEEE 33节点系统上进行实例分析,验证该双层规划算法的有效性。结果表明,所提方法能有效减少柔性互联装置的过度布置,同时减少由分布式能源频繁波动造成的运行成本。将模型凸化并线性化的方法明显提高了求解效率。
PRS-713就地化线路保护装置
近年来,智能变电站相关专业技术取得了长足发展。电子式互感器、合并单元、智能终端等新设备大量应用,智能IED设备的布置方式由二次小室向户外柜、预制舱等就地化方式过渡,新技术、新设备的应用和安装方式的变化给二次专业带 来了新的问题。在现有基础上进一步提高系统性能,解决智能变电站发展过程中出现的新问题,沿原有模式和轨道的提升空间有限,需要有突破性的技术创新和运维模式变革。综合上述智能变电站的问题与需求,我司提供了就地化整站解决方案。
ZHN10-30 170kA发电机断路器成套装置
170kA发电机断路器成套装置适用于单台发电机容量在800MW~1000MW新建电厂项目或电厂技术改造项目。它安装于发电机和主变压器之间,主要用于发电机回路主设备的保护,对于优化机组控制保护和运行方式、提高电厂运行的安全性和经济性具有明显作用。 170kA发电机断路器成套装置由三个单极组成,每极包括断路器、隔离开关、接地开关以及电容器等元件。断路器、隔离开关、接地开关均为三极机械联动,整个产品布置紧凑,运输、安装方便。 170kA发电机断路器成套装置通过了全套型式试验,具有通流能力强、开断电流大、可靠性高等特点。产品具有完全自主知识产权,填补了国内空白,综合性能达到国际领先水平。
锂电池模组液冷并联蛇形流道结构设计及优化
锂离子电池被广泛应用于化学储能系统,然而由于该电池固有的产热特性,热失控成为了化学储能电站的一大安全隐患。因此优化设计电池热管理系统,有效避免热失控现象,对化学储能系统安全运行至关重要。文中设计了一种兼具串联折返与并联分支结构的新型并联蛇形流道液冷板,通过仿真实验,研究液冷板流道结构、液冷系统布置、冷却液入口流速对最高温度、温度分布均匀性、进出口压降的影响,以达到优化液冷系统的目的。结果表明,相同冷却液入口流速下,与传统并联流道相比,新型流道的最高温度降低0.284 9 K、模组组内温差降低0.466 3 K,与传统蛇形流道相比,其进出口压降减小40.18%;基于并联蛇形流道液冷板,液冷系统的最佳布置方案为冷却液二分口注入+液冷板交错布置;不同液冷板流速差异化设置,即两侧液冷板入口流速设定为0.1 m/s,居中液冷板入口流速设定为0.2 m/s,较四板保持相同流速为0.2 m/s的方案,电池模组组内温差降低13.62%,列间温差降低82.59%,能耗降低44.87%,达到“降本增效”的优化效果。合理的流道结构、交错的液冷板布置以及差异化的入口流速设计可以优化电池模组的液冷系统,增加电池模组运行的安全性。