高压直流稳态工况无功调节能力
高压直流(high voltage direct current,HVDC)换流器具有一定的动态无功调节能力,充分利用换流站的无功调节能力,可显著改善HVDC系统的稳定性能。文中研究了HVDC系统稳态运行时的无功功率可调节能力,分析了有功功率和无功功率相互耦合的特性,以国际大电网(conference International des grands reseaux electriques,CIGRE)的HVDC标准测试模型和贵广Ⅱ直流输电工程模型为算例,对稳态工况的直流电流可运行范围进行了解析,进而求出整流、逆变两侧的无功功率可调节能力,并将其应用在无功控制中。研究发现,CIGRE的HVDC标准测试模型对于容性的无功功率和感性的无功功率调节能力相近,而贵广Ⅱ直流输电工程模型对感性无功的调节能力远大于对容性无功的调节能力。在电磁暂态仿真程序PSCAD/EMTDC中验证了无功功率可调节能力的正确性和应用价值。
考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法
基于阻抗分析方法,以模块化多电平换流器(modular multilevel converter,MMC)环流控制为研究重点,对海上风电经柔直送出系统的稳定性影响展开深入研究。首先,采用谐波线性化的方法建立了柔直换流站与海上风电场的阻抗模型,进而推导了计及频率耦合效应的海上风电经柔直送出系统的阻抗模型。其次,基于阻抗稳定判据,揭示了环流控制对MMC阻抗及柔直送出系统稳定性的影响,进而提出了一种基于环流环节的MMC阻抗重塑控制方案。最后,通过RT-LAB硬件在环实时仿真系统,验证了稳定性分析结果的正确性和阻抗塑造方案的可行性。
基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案
针对限流电抗器安装在换流站出口,基于线路边界元件特性的多端柔直电网线路保护难以适用的问题,提出了基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案。首先,通过分析故障后模块化多电平换流器(modular multilevel converter, MMC)在直流侧呈现的阻抗频率特性,推导出实际频率大于谐振频率时MMC等效阻抗呈感性。然后,通过分析母线处电压行波折射系数的幅频特性可知,折射过程会对故障电压行波中的低频分量具有较明显的衰减作用,并以此为依据分析区内外故障时线路两侧换流站不同出线低频暂态能量比值的差异,可利用此差异识别故障。最后,PSCAD/EMTDC的仿真结果表明,所提保护方案能够可靠识别故障,不依赖线路边界元件,且具有一定的耐过渡电阻能力。
基于半桥MMC特征信号注入的柔性直流线路频变参数辨识
柔性直流电网故障电流上升速度快与电力电子器件过流能力弱形成突出矛盾,线路保护需要在数毫秒级完成故障判别,输电线路精确参数的获取对于提升继电保护的性能至关重要。然而直流系统中缺乏稳定基频,导致输电线路相关参数难以获取、保护实现较为困难。针对柔性直流线路频变参数难以获取的问题,提出基于半桥模块化多电平换流器(half bridge modular multilevel converter, HB-MMC)特征信号注入的柔性直流线路频变参数辨识方法。首先通过换流器控制在线路中注入特定频率信号,然后利用快速傅里叶分解提取不同频率的信号并计算指定频率下的线路参数,最后依据不同线路参数的频变特性拟合出对应的幅频特性曲线。仿真表明,所提参数辨识方法可以准确拟合保护所需直流线路频变参数,参数辨识频段内相对误差小于1.5%。
考虑有功不确定性的配电网新能源无功优化控制
提出了一种考虑有功不确定性的配电网新能源无功-电压下垂双层鲁棒优化控制模型。首先,在参考点优化层,以多时段总运行成本最小为目标,对静止无功补偿设备与调压变压器的协调控制指令、新能源的无功功率参考值和端口电压参考值等系统中影响无功分布的典型相关控制量进行优化;然后,在斜率优化层,基于双层列生成算法框架,分别建立斜率指令优化主问题模型和极端场景集筛选子问题模型。结果表明,所提出的优化控制方法不仅可以有效适应新能源发电出力的随机波动,同时能够充分利用其并网换流器的无功容量,在优化系统网损和调压设备操作成本的同时,增强系统运行的可靠性。
基于拐点密集区凹凸波动特性的直流配网故障检测方法
基于模块化多电平换流器(modular multilevel converter, MMC)的柔性直流配电网具有不存在换相失败等优点。但换流器存在低惯性、弱阻尼等特性,导致故障电流上升速度快且峰值高,对系统危害极大。针对直流配电网发生单极接地故障难以准确选择故障馈线的问题,提出了一种基于拐点密集区凹凸波动特性的直流配网故障检测方法。首先,利用变分模态分解算法对各馈线零模电流进行分解,选取特征分量。然后,计算特征分量的二阶导数,选择拐点密集区并进行归一化处理,得到各馈线的凹凸波动性。最后,判定凹凸波动性与其他馈线相异的线路为故障线路。仿真结果表明,所提方法能够快速识别故障馈线,且受过渡电阻、采样频率、数据窗和噪声等因素影响小。
永磁同步风力发电系统的最大功率跟踪模糊分数阶控制
在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同步风力发电系统的最大功率跟踪(maximum power point tracking,MPPT)问题进行研究。首先建立了永磁同步风力发电系统的机理仿真模型,用两电平双PWM全功率换流器连接风力发电机与电网。然后基于以上模型,分别设计了整数阶PI控制器、分数阶PIλ控制器、模糊分数阶PIλ控制器以实现MPPT控制。最后对以上控制策略进行了仿真研究。结果表明,无论在阶跃风速还是随机风速下,模糊分数阶PIλ控制器相较于其他两种均具有更出色的MPPT性能与更强的鲁棒性。
电网不对称故障下MMC自适应相功率均衡控制策略
交流电网不对称故障工况下模块化多电平换流器(modular multilevel converter, MMC)存在相功率不均衡的问题,常规的基于直流环流注入的调控方法会引起桥臂电流不对称,导致各相电流应力不相等;而基于零序电压注入的方法可能导致系统过调制,危害系统安全稳定运行。针对传统相功率均衡控制策略的局限性,提出一种交流电网不对称故障下MMC自适应相功率均衡控制策略。首先,分析基于零序电压和直流环流注入的MMC相间功率调控原理,指出不同方法单独进行相间功率均衡的局限性。其次,研究零序电压注入方法的过调制边界,引入相功率分配系数,给出不同故障下相功率系数优化方法,提出基于零序电压和直流环流注入协调的MMC自适应相功率均衡控制策略。最后,通过仿真验证了机理分析与所提控制策略的正确性和有效性。