共 2条 混合神经网络
论文

基于注意力机制的混合神经网络电力设备缺陷文本挖掘方法

发布日期:2023-09-26

电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。

论文

基于混合神经网络的电力线脉冲噪声参数估计方法

发布日期:2023-10-07

脉冲噪声广泛存在于电力线通信(power line communication,PLC)系统中,会严重影响系统的通信性能。电力线脉冲噪声的建模通常使用α稳定分布模型,为达到最佳的脉冲噪声抑制效果,需要知道脉冲噪声的类型和相关参数。为此,文章提出一种基于混合神经网络的符合α稳定分布的脉冲噪声参数估计方法。不同于传统的方法,本方法可以分别独立地估计α稳定分布的重要参数α(即特征指数)和γ(即尺度参数)。仿真结果表明,与传统方法相比,提出的方法具有更准确的参数估计性能,归一化均方误差值仅为10–4左右。

热点资讯

1

《电力行业关键设备供需统计分析报告2023》上新了!

2

2023年变电智能运检优秀论文征集

3

EPTC双周刊

4

“EPTC智巡榜”年度优秀企业征集

5

“双碳”目标下的低压智能配电台区应用设计

6

2023年EPTC大事记

7

电力绝缘子40年技术回顾与展望——制造篇

8

关于举办2023年(第六届)电力信息通信新技术大会暨数字化发展论坛的通知

9

电线电缆产品质量国家监督抽查实施细则(2022年版)发布

10

新型电力系统中抽水蓄能定位与发展前景