配用电通信技术及产业发展报告
随着新型电力系统建设的推进,配电系统逐渐发展成为具有电能汇集、传输、存储和交易功能的新型区域电力系统,配电网已成为能源互联网和电力物联网转型的主战场。分布式电源和可调负载、储能、电动汽车充电桩、能源转换等新型业务蓬勃发展,配电网一次、二次设备增多,电网规模扩大,现场和IT设备间传输的数据量大幅增加,系统可观、可测、可控、可调能力建设逐步提升。推进先进数字技术与能源电力技术的深度融合,构建数字化、智能化新型配电系统,需要提供更加快速、灵活、安全、高效的配电通信技术的基础支撑。 2021年7月国家电网有限公司发布了《构建以新能源为主体的新型电力系统行动方案(2021—2030年)》。该方案明确提出,加大中压配电网智能终端部署、配电通信网建设和配电自动化实用化,并向低压配电网延伸,大幅度提高可观性、可测性、可控性。到2025年,基本建成安全可靠、绿色智能、灵活互动、经济高效的智慧配电网。配电网智能化终端种类多、数量大、分布范围广、运行环境复杂,智能化业务对通信性能要求高,没有一种通信技术能够单独、经济、可靠地解决“最后几千米”通信接入的难题。 在此背景下,国网安徽省电力有限公司电力科学研究院、EPTC 电力技术协作平台联合组编了《配用电通信技术及产业发展报告》一书。 联 系 人:张伟豪 王黎明 手 机:18518354192 18310385257
《中低压配电网改造技术导则》解读
智能配电
考虑电压-无功调节的台区互联装置规划方法
伴随分布式能源广泛接入低压配电网,其对配电网运行灵活性和消纳能力的要求不断提高。利用低压柔性互联装置将独立运行的低压配电台区分区互联,避免传统电压调节和无功补偿装置频繁动作。考虑到柔性互联装置造价昂贵,协同传统电压-无功调节装置,文中提出低压柔性互联装置的选址定容规划方法。首先,分析低压柔性互联装置拓扑和运行方式,建立其潮流模型。其次,建立低压柔性互联装置优化配置的双层规划模型,上层规划以年综合费用最小为目标,下层规划考虑电压-无功协调控制时间序列模型,以运行成本和电压偏差最小为目标,基于粒子群优化算法和混合整数二阶锥规划算法交替求解,得出配电系统最优柔性互联方案和最优运行方式。最后,在IEEE 33节点系统上进行实例分析,验证该双层规划算法的有效性。结果表明,所提方法能有效减少柔性互联装置的过度布置,同时减少由分布式能源频繁波动造成的运行成本。将模型凸化并线性化的方法明显提高了求解效率。
考虑多时刻和压缩候选集合的配电网最小化采集优化方法
当前配电网可观性不足,导致大规模分布式电源并网下的中低压配电网能量管理能力欠缺。配电网最小化采集技术能够以最小经济成本实现量测最优配置,对于提升系统可观性水平至关重要。提出一种考虑多时间断面的最小化采集优化方法,模型分两阶段求解。第一阶段压缩候选量测集,将无须迭代更新的Fisher信息矩阵(Fisher information matrix,FIM)值作为蚁群算法信息素更新参数,极大降低了算法的复杂度;在此基础上,第二阶段考虑状态估计精度需求,基于蚁群算法进一步确定最优配置方案。通过方案对比表明,所提最小化采集方法可充分考虑潮流分布变化对状态估计精度的影响,实现了采集终端集约化配置与高效计算,保障了终端投资经济性与配电网可观测性。
中低压配电网柔性互联技术及应用探讨
2015年,国家印发了《关于促进智能电网发展的指导意见》系列文件,明确了发展配网柔性化技术,鼓励交直流混合配用电技术研究与试点应用。2021年“碳达峰、碳中和”重大战略出台,配电网作为重要的公共基础设施,在促进分布式电源就近消纳、承载新型负荷等方面的功能日益显著,其柔性化转型将有力支撑双碳战略,推动配电网高质量发展。
基于虚拟阻抗的低压配电网拓扑识别方法
当前拓扑识别技术难以反映潮流特性对拓扑识别的影响,基于配电网现有量测数据,通过分析节点间的电气距离,提出了虚拟阻抗的概念。将节点间具备电气意义的且与电气距离成正相关的连续变量定义为虚拟阻抗,并提出了一种基于虚拟阻抗的低压配电网拓扑识别方法。首先,构建以节点间虚拟阻抗为因变量的多元线性回归方程。然后,通过岭回归计算每一个单相电表与关口电表构成的回归方程的虚拟阻抗,根据计算结果快速判别出拓扑关系异常的电气设备。最后,建立基于导数动态时间弯曲(derivative dynamic time warping, DDTW)距离的校验模型,重新构建得到电气设备的正确拓扑关系,实现低压配电网拓扑关系的修正。以实际的低压配电网台区样本数据为依据,验证了所提方法的有效性。