基于MBI-PBI-ResNet的超短期光伏功率预测
为了增强光伏并网的稳定性,提高光伏发电功率预测精度,提出一种基于相似日聚类、群分解(swarm decomposition, SWD)和MBI-PBI-ResNet深度学习网络模型的光伏发电功率超短期预测方法。首先,使用快速傅里叶变换(fast fourier transform, FFT)提取太阳辐照度的期望频率,将其作为聚类特征向量,并根据此聚类特征向量采用自适应仿射传播聚类(adaptive affinity propagation clustering, AdAP)实现相似日聚类。其次,对每一类相似日分别使用群分解算法进行分解,以提取原始数据的多尺度波动规律特征。最后,利用MBI-PBI-ResNet来实现对天气环境多变量关联影响下的时序特征挖掘以及对多尺度分量的局部波形空间特征和长时间依赖时序特征的同时挖掘,并对不同类型特征进行综合集成来实现光伏发电功率超短期预测。研究结果表明:所提方法在光伏发电功率超短期预测领域相较于其他深度学习方法预测精度提高了3%以上,说明此方法在光伏发电功率超短期预测领域具有较高的预测精度和较强的泛化能力。
融合深度误差反馈学习和注意力机制的短期风电功率预测
为提高风电功率预测精度,提出了一种有机融合深度反馈学习与注意力机制的短期风电功率预测方法。首先,以风电场数值天气预报(numerical weather prediction, NWP)为原始输入,基于双层长短期记忆网络(long short-term memory, LSTM)模型对风电功率进行初步预测。其次,利用极端梯度提升(eXtreme gradient boosting, XGBoost)算法构建误差估计模型,以便在给定未来一段时间内NWP数据的情况下对初步预测误差进行快速估计。然后,利用自适应白噪声完备集成经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将初步预测误差分解为不同频段的误差序列,并将其作为附加性反馈输入,对风电功率进行二次预测。进一步在二次预测模型中引入注意力机制,为风电功率预测序列与误差序列动态分配权重,由此引导预测模型在学习过程中充分挖掘学习与误差相关的关键特征。最后,仿真结果表明所提方法可显著提高短期风电功率预测的可靠性。