生物质气化耦合发电体系的合成气组分与能量分析
碳达峰碳减排目标实现过程中,充分挖掘生物质耦合发电是一项关键举措。通过Aspen Plus软件对生物质气化耦合发电体系中的气化过程进行了建模分析,重点研究了当量比和环境压力对合成气气体组分的影响,并结合计算结果探讨了合成气热值及能量的变化规律。结果表明,随着当量比的增加,H2体积分数由19.47%单调降低至5.19%;CO体积分数在当量比为0.3附近达到最大值22%;CH4体积分数随着当量比的增加呈现单调降低的状态,从1.3%降至0。依托理论研究的成果,合成气体热值的曲线与CO和H2表现出相同的变化规律,在当量比0.3~0.35时达到最高值,然后快速下降。考虑到带入炉膛的能量还有气体显焓,提出了一种热值+显焓的合成气能量评价方式,其在当量比为0.35时达到最大值,也是生物质耦合气化系统的最优当量比区间。
基于LIBS的快速检测技术及火电行业应用
数字化、智能化是发电行业发展大势所趋。智慧电站的发展急需各种快速检测技术提供数据支持。激光诱导击穿光谱(LIBS)技术具有实时、多元素同时测量、可远程检测等优点,是智慧电站发展的重大需求。例如基于LIBS的煤质快速分析可为混配煤、燃烧优化、污染控制等提供支撑,提高电厂运行的经济性和安全性;而基于LIBS的钢材管道原位检测对保障电厂安全运行意义重大。项目组在之前的研究中,揭示了LIBS测量不确定性和误差的产生机理,提出了光谱标准化、主导因素偏最小二乘(PLS)模型、基于自适应光谱数据库的光谱辨识等一整套方法,实现了LIBS精确定量化,获得2017中国仪器仪表学会科学技术奖一等奖、第九届国际发明展览会金奖。然而,在煤质分析中,面临煤炭种类多样、成分复杂且分布不均匀、挥发分和灰分导致的基体效应严重,环境粉尘震动和温度大幅度变化对LIBS测量影响大等严重挑战;而金属原位测量面临设备小型化要求、元素谱线自吸收和互干扰严重等难题。 根据本项目成果研制的煤质分析仪对煤炭主要指标的测量精度达到传统化学方法的国家标准要求,手持式金属分析仪的测量精度达到或者超过了成熟的X射线荧光技术。项目申请专利23项(授权20项,含1项国际专利),成果通过国外内多家公司获得转化,专利许可金额超过1500万元,并为社会创造经济价值超过1.5亿元。 本项目研制分析仪操作简单、维护方便,检测指标全面,具有较强的可推广性,已应用于火电行业多家单位。项目技术成果的应用可为电厂煤质快速检测、燃烧优化、污染物控制、钢材质检提供数据支撑,推动煤炭清洁高效利用及智慧电厂建设。
生物质气化耦合发电体系的合成气组分与能量分析
碳达峰碳减排目标实现过程中,充分挖掘生物质耦合发电是一项关键举措。通过Aspen Plus软件对生物质气化耦合发电体系中的气化过程进行了建模分析,重点研究了当量比和环境压力对合成气气体组分的影响,并结合计算结果探讨了合成气热值及能量的变化规律。结果表明,随着当量比的增加,H2体积分数由19.47%单调降低至5.19%;CO体积分数在当量比为0.3附近达到最大值22%;CH4体积分数随着当量比的增加呈现单调降低的状态,从1.3%降至0。依托理论研究的成果,合成气体热值的曲线与CO和H2表现出相同的变化规律,在当量比0.3~0.35时达到最高值,然后快速下降。考虑到带入炉膛的能量还有气体显焓,提出了一种热值+显焓的合成气能量评价方式,其在当量比为0.35时达到最大值,也是生物质耦合气化系统的最优当量比区间。
火电厂水质分析仪器质量验收导则
计量回路投运前正确性分析仪
该设备及方法可在行业全面推广,涉及到计量装置投运前验收、定检预试等工作都可以使用此设备,现已在曲靖局本部,两家县级供电企业推广使用,使用效果非常好,很大程度上缩短作业时间,减少现场作业人员的劳动强度;减少了现场作业条件限制,降低现场作业难度;有效辟免丁恢复二次回路时人员失误造成的计量回路差错等情况。 在技术创新方面属于国内首创、行业内领先,方法巧妙、可靠、高效且易于实现,该设备成本低廉,批量生产一套预计在2000元左右,现已具备形成产品的属性,具有全套自主研发测试技术资料,可复制性强,且市场未出现该类产品,具有较高的推广价值,经济效益和社会效益显著。
发电厂水质分析仪器实验室质量管理导则
生物质合成灰的烧结熔融特性和矿物转变规律实验研究
研究生物质在流化床燃烧过程的结焦问题,分析钾盐形式和含量对生物质灰烧结熔融特性的影响。 方法 借助扫描电子显微镜耦合能谱仪、X射线衍射仪、X射线荧光分析仪和FactSage热力学计算软件,通过实验分析了生物质合成灰的烧结熔融特性和矿物转变规律。 结果 在流化床的典型运行温度750~950 ℃范围内,合成灰的烧结熔融程度随温度以及钾盐质量分数的增加而加剧。此外,钾盐形式不同,其对生物质合成灰的烧结熔融特性的影响也有显著差异:钾盐为K2CO3时,合成灰中液相比例最高可达34.36%,合成灰由此发生严重烧结;钾盐为KCl时,大部分K和Cl元素在750~850 ℃逃逸,合成灰的烧结程度较K2CO3有所减弱;钾盐为K2SO4时,合成灰中液相含量最少,烧结熔融程度也最弱。 结论 改变钾盐的存在形式并控制床温,有望缓解生物质在流化床燃烧过程的结焦问题。
高性能锂离子电容器正极材料石墨烯-介孔炭复合物的制备及性能分析
设计同时具有高质量活性和高体积活性的锂离子电容器(lithium-ion capacitor,LIC)复合正极材料。 方法 借助扫描电子显微镜、透射电子显微镜、康塔全自动比表面和孔径分析仪、四探针测试仪,通过实验分析了颗粒之间的微观形貌、堆叠方式、接触模式和界面特性对复合电极的电导率、电学性质的影响规律。 结果 将介孔活性炭(mesoporous activated carbon,MC)与单分散石墨烯/单壁碳纳米管杂化物(graphene/single-walled carbon nanotube hybrid,GNH)混合,紧密压缩制成锂离子电容器正极材料。GNH均匀地包裹在MC颗粒表面,与MC面对面接触,增大接触面积;而且GNH在MC颗粒之间形成均匀的三维导电网络,提供了快速的电子传导。另外,GNH具有开放结构,会优先吸附电解液离子,与MC界面间存在浓度梯度;同时,GNH具有较高的导电性,与导电性较差的MC界面间存在接触电势差效应。两者共同促使GNH和MC界面之间形成快速的离子和电子双传输路径,促进离子在MC内部的扩散,从而避免了高电流密度下因离子扩散缓慢而造成的容量损失。 结论 添加5% GNH提高了倍率性能,并且在不牺牲堆积密度的前提下同时提高质量和体积能量密度。
发电厂水质分析仪器质量验收导则