共 39条 卷积神经网络
论文

基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测

发布日期:2024-08-22

近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。

关键词:
527次浏览
论文

基于体素注意力网络的电力设备目标检测模型

发布日期:2024-05-24

卷积神经网络由于其有限的感受野无法高效捕捉到电力场景中避雷器、GIS进线套管等设备的上下文信息,进而影响检测效果。为解决上述问题,引入基于Transformer的体素注意力网络,提出局部注意力和空洞注意力机制来分别捕获图像体积像素中的近程和远程特征联系,在保证计算开销不增大的同时,有效扩大注意力范围。同时,设计子流形体素模块和稀疏体素模块来分别提取非空体素位置和空白体素位置上的特征信息。最后,在通用数据集Waymo和KITTI以及云南省某输变电区域的图像数据集上与主流模型进行比较,证明所提模型对于电力设备的检测具有更加优越的性能。

525次浏览
论文

基于深度学习的电力系统虚假数据注入攻击检测综述

发布日期:2024-10-25

虚假数据注入攻击(false data injection attack, FDIA)是针对电力系统的一种常见网络攻击,可以通过终端链路或设备注入异常数据,绕过不良数据检测机制,进而引发电力系统的异常运行,造成严重的经济损失。近年来深度学习技术在FDIA检测方面取得诸多进展,通过大量的数据训练和强大的模型学习能力,能够自动学习和提取攻击数据特征,相对于传统方法具有更高的准确率和鲁棒性。总结了近年来基于深度学习的电力系统FDIA检测研究进展,涵盖卷积神经网络、循环神经网络、图神经网络、生成对抗网络和深度强化学习等典型深度学习模型。首先分析各类深度学习模型的FDIA检测原理,并介绍相关技术方法。然后从鲁棒性、评估指标和可扩展性等方面对上述技术进行对比分析,总结其应用范围及存在不足。最后探讨了当前研究中存在的挑战和未来的研究发展方向。

499次浏览
论文

基于深度学习的直流微电网虚假数据注入攻击二阶段检测方法

发布日期:2024-10-14

直流微电网是一个网络物理信息系统,在信息传递的过程中容易遭受网络攻击的影响。虚假数据注入信息通道会影响微电网的系统安全。检测并修正虚假数据注入攻击,能够提升微电网系统运行的安全性。针对这一问题,提出了一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short-term memory,LSTM)联合最大互信息系数(maximum information coefficient,MIC)的二阶段虚假数据注入攻击检测方法。首先,使用CNN从直流微电网运行的时序数列中提取时序特征,运用LSTM模型结合CNN提取的时序特征运行得到直流微电网运行状态预测值,与直流微电网运行的实际值对比,初步判断系统中是否存在虚假数据;其次,考虑到CNN-LSTM模型存在一定的误报率,构建MIC校验器,进一步判断系统中是否存在虚假数据并恢复;最后,通过直流微电网Matlab仿真分析,验证了所提方法的合理性和可行性。

论文

基于CNN-LSTM-Attention的配电网拓扑实时辨识方法

发布日期:2024-05-30

配电网中准确的拓扑结构辨识对运行和控制具有重要意义,针对实际配电网拓扑结构变动的情况,搭建了可智能辨识配电网拓扑结构的深度学习模型。首先,生成不同拓扑结构下的配电网量测数据并进行数据预处理。其次,构建了融合CNN(卷积神经网络)、LSTM(长短期记忆网络)和Attention(注意力机制)的拓扑结构智能辨识模型,并结合历史量测数据对模型训练并测试。最后,在IEEE 33节点和PG&E69节点配电系统仿真算例中,验证了该基于CNN-LSTM-Attention模型的拓扑辨识方法相较于传统辨识方法在辨识精度上的优越性,实现了该模型的在线应用。

488次浏览
论文

基于重采样降噪与主成分分析的宽卷积深度神经网络风机故障诊断方法

发布日期:2024-01-04

针对数据驱动的风机故障诊断面临的数据量少、信号噪声干扰等问题,提出了一种基于宽卷积深度神经网络的故障诊断方法。该方法采用了重采样、小波阈值去噪等信号预处理方式,既增加了信息密度,又保证了信息的完整性,结合主成分分析法(principal component analysis,PCA)替代人工经验进行数据通道的选取。利用卷积神经网络的强大特征提取能力,通过较少的数据训练即可对风机机组在时域上的故障信号进行有效的特征提取,从而可以对风机进行精确的故障诊断。基于某真实风机机组数据的实验结果,验证了该方法的有效性。

关键词:
486次浏览
论文

基于声纹压缩和代价敏感的变压器状态检测评估方法

发布日期:2024-07-24

声纹检测技术可以助力巡检人员对变压器状态进行检测和评估。文中提出一种基于声纹压缩和代价敏感的变压器状态检测和评估方法。该方法首先提取变压器音频的声纹特征,然后在频率维度上对声纹特征进行筛选和压缩,最后使用卷积神经网络评估变压器状态,并引入代价敏感损失函数以提高对难检出样本的关注度。以某35 kV变压器为研究对象,通过收集现场音频、模拟实验和样本扩充得到变压器音频数据集。测试结果表明,文中所提方法将声纹维度从1 025维降低到80维,计算量和显存分别降低到1 025维的8.1%和7.7%。同时,所提方法的声纹识别准确率高达83.5%,并将最难检出的短路电流异常状态的召回率从48.2%提升至63.6%。

462次浏览
论文

基于注意力机制的混合神经网络电力设备缺陷文本挖掘方法

发布日期:2023-09-26

电网在运行过程中会产生大量的设备缺陷文本记录,针对变电设备缺陷文本的特点,文章提出了基于注意力机制的混合神经网络(hybrid neural network based on attention mechanism,HNNA)电力设备缺陷文本挖掘方法。首先在总结电力设备缺陷文本特点的基础上,参考中文文本分类的一般流程,结合自主编写的词典和停用词表对缺陷文本进行预处理;利用Word2vec模型将词语映射到高维空间;使用卷积神经网络(convolution neural network,CNN)和双向长短期记忆网络(bidirectional long short term memory,BiLSTM)提取文本局部特征和上下文特征;将提取的特征进行融合,最后采用Attention实现特征权重的分配,增强关键特征对分类效果的影响,并从多个评价维度与传统机器学习模型、深度学习模型对比。算例结果表明,提出的模型具有更好的分类效果,可以实现电力设备缺陷等级的高效准确划分。

论文

基于改进秃鹰算法优化极限学习机的谐波发射水平估计

发布日期:2024-01-03

针对目前电力系统谐波发射水平难以直接测量的问题,提出了一种基于改进秃鹰算法(improved bald eagle search, IBES)优化极限学习机(extreme learning machine, ELM)的谐波发射水平估计方法。首先,在传统秃鹰搜索算法中引入Tent混沌映射和柯西变异算子,利用IBES算法对ELM模型的输入权重和阈值进行寻优。其次,输入公共连接点(point of common coupling, PCC)处谐波电压和谐波电流,代入IBES-ELM模型,估计用户侧和系统侧谐波发射水平。最后进行仿真和工程实例分析,并与其他算法的估计结果进行对比。结果表明,所提IBES-ELM方法估计精度优于长短期记忆网络(long short-term memory, LSTM)、卷积神经网络(convolution neural network, CNN)、反向传播神经网络(back propagation neural network, BP)和CNN-LSTM算法模型,验证了该方法的有效性和稳定性。

450次浏览
论文

基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测

发布日期:2024-03-12

为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(long short term memory-gated recurrent unit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。

434次浏览

热点资讯

1

《电力行业关键设备供需统计分析报告2023》上新了!

2

2023年变电智能运检优秀论文征集

3

EPTC双周刊

4

“EPTC智巡榜”年度优秀企业征集

5

“双碳”目标下的低压智能配电台区应用设计

6

2023年EPTC大事记

7

电力绝缘子40年技术回顾与展望——制造篇

8

关于举办2023年(第六届)电力信息通信新技术大会暨数字化发展论坛的通知

9

电线电缆产品质量国家监督抽查实施细则(2022年版)发布

10

新型电力系统中抽水蓄能定位与发展前景