共 1条 变密度
论文

基于时间序列变密度处理的负荷曲线聚类分析

发布日期:2024-12-16

负荷曲线聚类是分析用户负荷特性的基础,能够从大量负荷数据中挖掘典型用电模式,了解用户电力消费的特点,对需求响应、电价设计、电网规划等应用具有重要意义。针对现有聚类方法对负荷时段特征考虑不足的问题,为提升聚类精度和满足实际应用需求,提出一种基于时间序列变密度处理的聚类方法。首先,采用线性插值法增加峰、谷、爬坡等3个关键时段数据点的密度,突出和放大其在聚类中的影响,并基于自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)降维方法减小冗余数据密度。然后,结合欧式距离和相关距离构建综合指标,对负荷曲线开展k-medoids聚类分析。最后,利用UCI数据集的居民用户实测数据对所提方法进行验证。实验结果表明,该方法能有效改善负荷聚类效果,真实反映了居民用户的用电特性。

关键词:
106次浏览

热点资讯

1

《电力行业关键设备供需统计分析报告2023》上新了!

2

电力绝缘子40年技术回顾与展望——制造篇

3

2023年变电智能运检优秀论文征集

4

“双碳”目标下的低压智能配电台区应用设计

5

EPTC双周刊

6

“EPTC智巡榜”年度优秀企业征集

7

电线电缆产品质量国家监督抽查实施细则(2022年版)发布

8

新型电力系统中抽水蓄能定位与发展前景

9

2024年EPTC大事记

10

关于举办2023年(第六届)电力信息通信新技术大会暨数字化发展论坛的通知