风电场理论发电量与弃风电量评估导则
含风光储岸电供电系统的分布鲁棒优化运行策略
可再生能源机组和电动船舶出力的不确定性及冲击特性会给岸电供电系统的安全稳定运行带来挑战。因此,提出了一种含风光储岸电供电系统的分布鲁棒优化运行策略。首先,不考虑风光出力不确定性以及冲击负荷的影响,以总费用最低为目标,建立确定性的含风光储岸电供电系统的运行模型。其次,以上述模型为基础,构建基于分布鲁棒优化的两阶段含风光储的岸电供电系统模型,采用组合范式来描述风光出力的不确定性,以减少因预测误差、出力波动性导致的弃风弃光。最后,使用C&CG(列与约束生成)算法来求解模型。利用某岸电供电系统数据,验证了所提策略可有效提升风光资源的消纳能力,降低运行成本。
考虑风机惯量支撑及有功备用的新能源电力系统优化调度模型
针对新能源大规模并网下,因系统惯量低、调频备用不足导致的系统运行安全问题,提出了考虑风机惯量支撑及有功备用的新能源电力系统优化调度模型。首先,建立实时风速下风机参与系统惯量支撑响应的风机惯量模型及风机降载出力的有功备用模型;然后,构建了两阶段随机鲁棒优化调度模型,以总运行成本最小为目标,采用列与约束生成算法求解两阶段模型;最后,以改进的IEEE-RTS 24节点系统为算例进行分析,结果表明,所提优化调度模型的总成本较低且弃风弃光量较少。
省级智慧能源服务平台建设成果
通过省级智慧能源服务平台的建设,能够突破资源、时空、环境约束,人人利用清洁能源,实现新能源高效利用,构筑能源发展新格局。将提高清洁能源使用率,降低弃风弃光率,能够改善自然环境,实现生态可持续发展,促进社会和谐发展。年内充分挖掘社会可中断负荷资源,完成了占最大负荷5%的可调节负荷资源库构建,已具备74万千瓦毫秒级、秒级精准负荷控制能力,持续提高大电网安全运行水平和清洁能源消纳能力,利用市场化手段,在弃风(光、水)时段,提升冰蓄冷空调、蓄热式采暖、客户侧储能等负荷水平,促进电力供需平衡,清洁能源消纳。
考虑碳排放流与需求响应的电力系统两阶段优化调度
风电接入从发电侧降低了电力系统碳排放,而引入需求响应消纳弃风为从负荷侧降碳提供了新思路。综合考虑风电和需求响应,基于电力系统碳排放流理论提出了日前日内两阶段电网低碳优化调度方法。首先,对电力系统碳排放流理论进行了分析,建立负荷侧的节点碳势模型;然后,将柔性负荷分为可转移和可削减两类负荷,基于负荷节点碳势模型设计了调用这两类负荷降碳的响应机制;在此基础上,建立了考虑低碳性和经济性的源荷协调日前优化调度模型,基于模型预测控制对日前优化调度模型进行求解,并通过反馈校正调整日内调度结果。最后分别通过改进PJM-5节点和IEEE-300系统进行仿真验证,结果表明,提出的优化调度方法能够有效促进柔性负荷消纳风电,减少弃风的同时实现负荷侧降碳的目标。
“源-网-荷-储”协调控制低碳经济优化及降碳效果分析
在“双碳”目标背景下,针对实现配电网低碳经济运行问题,提出了一种“源-网-荷-储”协调控制的配电网低碳经济优化方法。首先,以考虑弃风弃光成本、柔性负荷与储能装置调度成本、碳排放成本等的配电网综合成本最小为目标函数进行建模。其次,通过二阶锥松弛技术,将其转变为混合整数凸规划模型,进一步提高计算速率。然后通过修改的IEEE 33节点配电系统证明了该方法在降低配电网经济成本和碳排放方面的优越性。最后,对“源-网-荷-储”协调优化中不同降碳措施的效果进行了灵敏度分析,并以此为基础研究了协调低碳经济运行与传统经济运行之间矛盾与统一的博弈关系,得出了在不同环境条件下两种运行方式之间的相同点与差异点。
基于虚拟同步机控制参数自适应调节的储能系统调频方法
风电的大规模渗透一定程度上降低了电力系统的调频能力,储能作为一种相对成熟、行之有效的技术手段,被广泛用于电网调频。为此,研究了储能系统在虚拟同步机控制下参与电网调频的响应过程及优化配置。 方法 基于DIgSILENT/PowerFactory仿真软件搭建储能控制模型与电力系统,对系统投入储能前后的频率响应特性进行分析。进一步,考虑风电机组在不同出力模式下的备用容量,通过风速区间的划分与风电机组功率预留系数的确定,优化储能系统的配置结果,实现储能系统调频系数的自适应调整。 结果 储能的投入能够有效改善系统频率响应、减少弃风。通过合理预留风电机组自身调频容量,储能系统可以为电网提供可靠的功率支撑。 结论 基于风机风速与输出功率的储能系统调频系数自适应调整方法,能够在满足系统调频需求的同时有效减小储能系统的超调量和输出功率,延长储能工作时间。
基于风电场景概率的电热混合储能优化配置
为有效提高风电入网的经济性和可行性,文中提出一种考虑风电典型场景概率的电热混合储能优化配置方案。首先通过场景分析,利用K-means聚类法将大量风机历史出力数据简化为6个典型出力场景,确定各场景发生的概率,其中聚类数目由肘部曲线法和Dunn指数法综合确定;其次提出电热混合储能系统控制策略,建立适用于多场景的风储联合系统模型;最后,以经济性成本最低与弃风量最小为目标,建立包含电、热负荷综合响应的容量配置优化模型,并将场景概率以权值的形式加入到目标函数中,采用粒子群算法求解模型。通过仿真分析和与其他储能配置场景对比,发现所提配置策略能够提高风电利用率约16.12%,同时减少系统综合成本约43.76%,验证了所提策略的合理性和有效性。
高风电渗透率下液流电池储能系统调峰优化控制策略
在“双碳”目标背景下,解决高风电渗透率系统建设带来的调峰安全性和经济性问题。 方法 采用电池储能系统削峰填谷的解决方案,提出了一种兼顾技术及经济性的锌溴液流电池(zinc-bromine flow battery,ZBB)储能的调峰优化控制方法。根据实际电池装置,对ZBB储能进行结构解析及数学模型构建。考虑调峰技术性效果,以调峰后的负荷曲线标准差最小为目标函数,提出一种考虑调峰效果的储能双向寻优控制策略。在此基础上,依据电网分时(time of use,TOU)电价政策,以技术性及经济性最优为目标函数,提出一种基于TOU电价机制的储能调峰经济模型,得出储能优化功率时序结果。最后,以东北某地区负荷及风电数据为例,对比验证所提策略的有效性。 结果 所提策略相较于原负荷,在日均负荷峰谷差、峰谷差率指标上分别降低了35.973%和34.205%,在调峰经济性优化方面提高了5.582%,且合并缓解了电网弃风消纳问题。 结论 所提策略在达到一定调峰效果的同时,在其全寿命周期内仍保持较好的调峰经济性。
含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度
为提升综合能源系统(integrated energy system,IES)的可再生能源消纳以及低碳经济效益,提出含电转气(power-to-gas,P2G)和碳捕集(carbon capture system,CCS)耦合的综合能源系统多时间尺度优化调度模型。首先,建立基于阶梯型碳交易机制的含P2G和CCS耦合模型,并构建多能量转换设备和储能设备组成的电-热-冷综合能源系统;其次,基于多时间尺度的优化调度策略,以购能成本、运维成本、碳交易成本、弃风光成本为目标函数建立日前-日内滚动-实时调整3个阶段的优化调度模型;最后,以四川某工业园区为例进行仿真,结果证明本文提出的模型有效提高了综合能源系统的低碳经济效益、能源利用率和系统稳定性。