主动干预型消弧装置关键技术分析
课程详细主动干预型消弧装置的原理,关键技术,并结合现场应用案例进行分析。主动干预型消弧装置将配电网单相接地故障带来的问题同供电可靠性、人身安全保护问题进行总体考虑,提出了系统化解决方案;全面系统解决现有小接地电 流系统发生单相接地故障时的飞弧、过电压、人身触电、接地选线、故障定位、故障隔离等问题,对配电网的安全、可靠、经济运行具有很重要现实的意义。 1、中性点不接地系统概况 2、主动干预型消弧装置的原理 3、主动干预型消弧装置的关键技术 4、配电网单相接地故障一体化解决方案 5、试验及应用
低功耗无线传感网电力应用现状与发展报告
本书围绕电力无线传感网技术创新应用,聚焦于低功耗无线传感网在发电、输电、变电、配电、用电等电力行业领域的应用,具体包括电力发电厂监测区域的事故预警、环境状态判断、劣化趋势分析,输电线路的电力巡检和运维管理,变电站内电力设备的运行状态、环境状态等在线监测,配电领域储能和配电自动化业务的监控和故障定位系统,用电采集和精准负荷控制业务的监测和分析管理等。介绍了无线传感网及其产业发展现状,概述了无线传感网主流技术,总结提炼了电力无线传感网在电力领域的应用情况,分析研究了电力无线传感网的应用价值和挑战,探讨提出了电力无线传感网技术应用发展趋势及建议。 无线传感网是大量的静止或移动的传感器节点以自组织和多跳的方式构成的无线网络,可以感知、采集和处理信息,并将获得的详尽信息发送给需要的用户。 “十四五”期间,国家电网有限公司服务新型电力系统构建需求,将“全力推进电力物联网高质量发展”作为重点工作任务之一,其中的各项工作部署均离不开无线传感网的支撑。无线传感器网中众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等。潜在的应用领域可以归纳为军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。新型电力系统的一些重要的、需要被监控的设备上可以安装传感器,实时监控设备的运行状况。采用无线传感网络技术,将监测到的重要参数上传到集中处理平台,智能电力系统可以根据参数的变化,及时发现设备故障等,主动预防可能发生的各种事故。 与传统有线网络相比,无线传感网络具有很明显的优势,主要有:低能耗、低成本、通用性、网络拓扑、安全、实时性、以数据为中心等。无线传感网给电力行业带来应用价值的同时,也面临着极大的挑战。通用无线传感网技术无法满足某些特定的业务需求,变电站、输电线路等某些复杂的电力现场环境对于功耗控制、传输距离、组网灵活性等方面有特定需求,需要结合电力物联网的业务需求和应用场景来实现功耗和连接性能的协同优化;在终端接入和数据传输方面,设备和数据量均呈爆发式增长,海量数据给电力物联网带来了资源和数据传输带宽的压力;传感节点大多布置在户外环境中,恶劣环境和网络攻击均影响传感节点的运行和信息传递,因此,提升终端接入安全和抗干扰能力是保证电力物联网健康发展的重要基础;传感器小型化、无源化技术有待突破,利用电网沿线的磁场、电场、振动及温差等外部条件,实现微源取能是关键难点。为此,电力企业需要弥补现有的不足和短板,结合电力行业发展战略,研究低功耗无线传感网的网络与安全连接技术,全方位地提高感知数据的颗粒度、广度和维度,并持续积极探索基于人工智能的知识赋能、5G通信技术、基于边缘计算的技术、数据开发服务技术等方面融合发展。 联系人:陈姗姗 手 机:13261508443 邮 箱:chenshanshan@eptc.org.cn
信息物理并发故障下的配电网供电恢复方法
针对配电网中信息通信系统与物理系统并发故障场景下的供电恢复问题,文章分析了对配电自动化主站处理故障定位、隔离与供电恢复过程的影响,提出了配电网信息物理并发故障关联耦合建模方法,构建了基于两阶段双层优化的配电网信息物理并发故障供电恢复模型,第一阶段通过通信网络动态路由,实现通信链路的损失最小,第二阶段以失电负荷最小、开关操作次数最少等为目标,进行配电网网络重构。两阶段双层优化模型采用KKT条件转换为单层优化模型后,采用Cplex进行求解,得出满足信息物理耦合约束的可行解,从而实现了配电网信息物理系统并发故障的有序恢复。通过DCPS-160节点算例进行了验证,结果验证了所提出模型的准确性和有效性。
基于小波分析和Hough变换直线检测的行波波头识别方法
精准、高效地辨识故障行波波头是故障测距的主要难点之一,而故障点反射波波头的有效识别则是单端故障行 波自动测距的关键依据于合理短窗截取的故障电流行波波前具有陡斜直线的特征,采用Hough变换直线检测的方法,通过 前几个行波波头的时间间隔和不同分辨率下初始浪涌突变斜率相关性来校验故障点反射波辨识的有效性,来对故障行波 初始波头和故障点反射波进行初定位,再采用小波分析法,对故障行波波头进行精确定位,提出了一种新的故障行波波 头识别方法实验结果表明,该方法能更准确的标定故障行波波头时刻,有效地提高单端行波故障定位的准确性。
一种新型的输电线路双端行波故障定位方法
针对行波故障测距技术中行波检测准确性和行波波速对测距精度的影响,提出一种新的双端行波故障定位方法。首先,介绍了变分模态分解(Variational Mode Decomposition,VMD)和 Teager能量算子(Teager Energy Operator,TEO)的特点,并将VMD与TEO相结合应用于故障行波波头的检测。其次,在双端行波故障测距原理的基础上,根据故障行波的传播路径,推导出一种不受行波波速和线路实际长度变化影响的行波故障测距新算法。该算法不需要检测行波反射波的波头,测距原理简单。最后,通过EMTDC仿真验证方法的正确性和准确性。大量的仿真结果表明该方法行波波头检测效果较好,测距准确度较高。
基于双层负序差值与负序测距的风电场集电线不对称故障定位
针对风电场集电线上复杂电源密集接入使得现有定位方法应用困难的问题,提出一种基于双层负序差值与负序测距的风电场集电线故障定位方案。首先,深入分析风机故障电流特性,从负序分量出发实现风机建模,同时计及风电场结构特点对其负序网络实施等效。然后,引入故障模拟策略,通过负序电压差值表征模拟故障与实际故障的差异以识别故障区域第一节点,进一步探究从实际故障场景到特定模拟故障场景的负序电压变化趋势,并定义负序电压比消除故障点电流影响,由此提出负序电压比差值判据以实现故障区域第二节点识别。最后,针对故障区域利用双端负序量推导测距公式确定故障位置。PSCAD/EMTDC验证表明,所提方案能够以较少测点计及含线路分支集电线的适用性准确定位集电线各类不对称故障,且定位效果不受故障位置、过渡电阻、风机、风速分布及相量不同步等因素影响。
基于混合量测状态估计的配电网故障定位方法
微型相量测量单元(micro-phasor measurement unit, μPMU)为配电自动化的进一步升级提供了良好的量测基础,但现阶段电网中μPMU数量有限,难以满足传统配电网故障定位的需求。针对该问题,结合电网中μPMU与智能电表等量测设备,并基于虚拟节点的多重状态估计方法,提出了一种基于混合量测状态估计的故障定位方法。首先,通过等效变换将μPMU和智能电表的测量信息输入到故障状态估计器当中。然后,利用μPMU将网络划分为不同的区域。根据状态估计结果计算故障电流,缩小故障搜索区域以减少计算复杂度。为了识别区域内的故障位置,通过设置附加虚拟故障节点形成多种特定的故障拓扑结构并执行多重状态估计,计算出用于识别故障位置的加权测量残差指标,以确定故障位置。最后,在实时仿真系统(real-time digital simulation, RTDS)中进行仿真测试,结果表明所提方法在不同故障场景下均能准确有效地定位故障,且对量测误差具有较好的鲁棒性。