新型电力系统中抽水蓄能定位与发展前景
自习近平总书记提出“双碳”目标愿景和构建以新能源为主体的新型电力系统以来,关于新型电力系统面临的变革和挑战被广泛研究和深刻认知。面向新型电力系统,电源侧新能源将成为电量的主要提供者,电网侧从交直流混联大电网向微电网、柔直电网等多元形态并存转变,负荷侧由单一用电向发用电一体转变,电力系统正在发生深刻变化。
基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案
针对限流电抗器安装在换流站出口,基于线路边界元件特性的多端柔直电网线路保护难以适用的问题,提出了基于换流站不同出线低频暂态能量比值的多端柔直电网线路保护方案。首先,通过分析故障后模块化多电平换流器(modular multilevel converter, MMC)在直流侧呈现的阻抗频率特性,推导出实际频率大于谐振频率时MMC等效阻抗呈感性。然后,通过分析母线处电压行波折射系数的幅频特性可知,折射过程会对故障电压行波中的低频分量具有较明显的衰减作用,并以此为依据分析区内外故障时线路两侧换流站不同出线低频暂态能量比值的差异,可利用此差异识别故障。最后,PSCAD/EMTDC的仿真结果表明,所提保护方案能够可靠识别故障,不依赖线路边界元件,且具有一定的耐过渡电阻能力。
张北柔直工程应用构网型控制策略实现满功率送电
近日,构网型柔直控制策略在张北柔直电网工程完成系统调试并成功投入应用,使工程具备450万千瓦满功率送电能力,大幅提升了直流电网的电压频率支撑能力和新能源发电外送能力,为华北电网新能源电量消纳和迎峰度夏电力保供注入新动能。
组合技术及应用——VSC plus,主动换流器,直流自耦变压器
架空线柔性直流输电是直流输电技术重要发展方向之一,有效应对直流线路故障是架空柔直的主要挑战。 VSC plusa表明:不同类型的换流器可以串联,串联的各子换流器可以承担不同的功能,按照该思路可以构造出多种新型拓扑。 主动换流器可以极大地降低对直流断路器的需求,实现直流电网故障无闭锁穿越:半桥+全桥型主动换流器拓扑简洁优美,应是未来直流电网的首选换流器。 直流自耦变压器DC Auto功能全面,经济性突出,可以方便地构建出分层、分级的立体式直流电网。 换流器之于直流电网,就如同发电机之于交流电网,充分利用换流器的可控性,是提高直流电网运行特性的关键为了实现直流电网中永久故障的隔离,直流断路器是必须的设备,但通过对换流器的有效控制,可以大大降低对直流断路器的快速性和开断容量的要求各种不同组网方式下,如何快速准确地检测和定位故障,是柔直电网安全运行需要解决的关键问题。 由于直流电网惯性小,响应速度快;同时,交流电力系统应该能够承受N-1乃至N-2故障,因此,通过合适的控制,直流电网的故障应该不会对所连交流电网带来严重的稳定性问题对交流电网来说,整流换流器相当于负荷,逆变换流器相当于发电机,通过适当控制,完全可以实现“完全可控负荷”和“虚拟同步发电机”等功能是将换流器控制成“同步机”,还是充分利用其快速可控性,纳入三道防线,设计新的交直流混合控制,是值得研究的重要课题。 柔直技术的兴起是由于海上风电开发的需要,柔直相比于交流并网和常规直流并网都具有明显的优势随着电力电子器件技术的发展,采用穿越型控制技术的点对点架空柔直(混合直流)具有取代常规直流的潜力交流电网已经发展了100多年仍然有不少未能解决的问题,直流电网的发展还需大量的理论研究和工程实践。
张北柔直工程应用构网型控制实现满功率送电
近日,构网型柔直控制策略在张北柔直电网工程完成系统调试并成功投入应用,大幅提升了直流电网的电压频率支撑能力和新能源外送能力,使工程具备450万千瓦满功率送电能力,为华北电网新能源消纳和迎峰度夏电力保供注入了澎湃动能。
汇总:2013-2022年我国标志性柔性直流输电工程
项目汇总:南澳多端柔直工程、舟山五端柔直工程、厦门±320千伏柔性直流输电科技示范工程、鲁西背靠背直流工程、渝鄂直流背靠背联网工程、张北柔直电网工程、乌东德电站送电广东广西特高压多端直流示范工程、如东海上风电柔性直流输电工程、粤港澳大湾区直流背靠背电网工程