发电机转子大轴对地绝缘测试的方法及装置
高速旋转的电机设备转子轴在正常运行时会产生一定的轴电压,如果轴电压的抑制和防护措施不得当,一旦形成回路,就会产生轴电流。较强的轴电流会产生电弧,使润滑状况迅速劣化并引起轴颈和轴瓦合金的电腐蚀,同时较强的轴电流还会带来严重的设备磁化,引起振动等故障,导致停机事故。 预防轴电压危害的重点在于防止轴电流形成通路,只要能形成有效的回路阻断,即可防止该问题的发生。因此电动机及发电机励端轴承与底板、轴承与油管间必须采用绝缘来阻断通路,由于轴电压通常很小(不高于10V),仅需要很低的绝緣即可防止产生电流。实际应用中,由于转子轴的另一端是接地状态,因此在不接地的一端通常采用双层绝缘( 见图1和图2),即轴承绝缘分成上下两层,中间夹一层金属板,金属板上面引出一-根导线连接到机外,便于测试绝缘电阻。 由于传统方法所测绝缘电阻实际上是轴承中间金属的绝缘电阻,只能间接反应转子轴的绝缘状况。由于转子轴端结构复杂,通常还有其他会与大轴接触的部件,如密封瓦、传感器等,该方法作为-一种间接测量方法,并不能完全反应实际情况,目前也并没有判断励端是否接地的直接测量方法。
电力微型智能传感器研究与应用
以电力微型智能传感器的研究和发展背景为切入点,分享了微型敏感元件、非侵入测量方法、传感取能与通信方法、高可靠集成应用技术等电力微型智能传感核心创新技术,介绍了微型智能传感器在电力输变配领域的工程应用情况,并对其未来的发展趋势进行了展望。
高压直流挤包绝缘电缆系统关键技术研究
随着柔性直流输电技术的日臻成熟,高压直流挤包绝缘电缆系统作为其中的关键设备在海上风电接入、孤岛平台供电和城市中心供电增容等领域应用日益增多,其绝缘性能及长期可靠性已成为世界性难题和研究热点。我国高压直流电缆研究、制造与应用工作起步较晚,在本项目之前,国内尚无系统研究高压直流挤包绝缘电缆系统关键技术的科研项目,更无具有自主知识产权的国产高压直流电缆和应用工程。针对我国柔性直流输电技术发展和工程应用需求,本项目在国内首次系统研究了高压直流挤包绝缘电缆绝缘材料选型、结构设计、关键生产工艺、试验与考核评价方法等,项目创新性强,技术难度大,取得一系列创新成果:掌握了高压直流挤包绝缘电缆设计与选型技术,提出了直流电缆绝缘材料评价方法及质量控制检测体系;研制了±200kV 纳米添加电导非线性增强绝缘直流电缆终端,并成功通过型式试验;研发了可重复利用、便于安装的直流电缆试验终端,解决了±320kV 以下电压等级直流电缆出厂试验难题;开发了高压直流挤包绝缘电缆系统全工况运行考核控制系统及全尺寸高压直流电缆脉冲电声法(PEA)空间电荷测量系统,解决了温度梯度条件下全尺寸高压直流电缆空间电荷测量与评价的世界性难题,带动了高压直流电缆系统专用检测技术进步,并实现了科技成果转化;推动了国内外高压直流挤包绝缘电缆系统标准体系建设,先后制定了高压直流挤包绝缘电缆使用技术规范、空间电荷测量方法技术规范及运行维护试验导则等一系列行业及国际技术标准。
新型电力系统惯量特性及其实时感知技术
新能源并网将不断挤占常规机组开机容量,降低系统转动惯量和调频能力,导致频率变化加快、波动幅度增大,因此需要新能源机组提供主动惯性支撑。但是新能源机组动态特性完全不同于同步发电机,传统摇摆方程已难以全面刻画新型电力系统频率受扰后的动态过程。为此,建立新型电力系统的惯量模型,可以准确刻画同步发电机、跟网型和构网型逆变器的惯量响应过程。提出惯量的实时测量方法,采用改进多项式曲线拟合法和系统辨识法,实现了对系统转动惯量和区域内惯量的准确感知。最后通过仿真,对新型电力系统等效惯量进行了量化评估,验证了所提的测量方法和数学模型的有效性。 Integration of new energy sources will continuously encroach upon the startup capacity of conventional units, reducing system's rotational inertia and frequency regulation capabilities. This leads to accelerated frequency changes and increased fluctuation amplitudes. Therefore, it is imperative for new energy units to provide active inertia support. However, the dynamic characteristics of new energy units differ significantly from synchronous generators, making traditional swing equations inadequate to fully reflect the dynamic process of frequency response in new-type power systems after disturbances. Therefore, an inertia model for new-type power systems is established to accurately characterize the inertia response process of synchronous generators, grid-following inverters, and gridforming inverters. A real-time inertia measurement method is proposed, which employs an improved polynomial curve fitting method(PCFM) and system identification method to accurately identify the system's rotational inertia and regional inertia. Finally, through simulation, a quantitative assessment of the equivalent inertia of new-type power systems is conducted, and the effectiveness of the proposed measurement method and mathematic
发电机定子绕组手包绝缘施加直流电压测量方法及评定导则
电力电缆线路沿线土壤热阻系数测量方法
发电厂纯水电导率在线测量方法
标称电压高于1000V交、直流系统用复合绝缘子憎水性测量方法
基于激光诱导击穿光谱的瞬态温度测量方法
温度是影响材料力学性能的重要因素之一,准确测量器件温度是认识材料在应力作用下其力学性能演变以及评估设备健康状态和寿命的重要方式。面向功率器件开关过程中焊接界面快速温变测量的需求,传统方法存在时间分辨能力不足、难以测量瞬态温度的问题。文中基于激光诱导元素特征谱线强度与温度的密切相关性,提出了一种微秒量级时间分辨能力的表面温度测量方法,并建立了样品表面温度与光谱特性之间的定量关系。研究结果表明,物质表面温度提升导致激光诱导等离子体光谱强度和信噪比增强,且增强效果受到光谱采集延时和门宽影响。采用反向传播-人工神经网络(back propagation-artificial neural network,BP-ANN)和偏最小二乘(partial least squares,PLS)法对表面温度与光谱特性关系定量拟合并校准,拟合模型线性相关性拟合度指标均大于0.99。BP-ANN拟合模型的拟合偏差更小,其均方根误差(root mean squared error,RMSE)为2.582,正确率为98.3%。该方法为物体瞬态温度测量提供了一种有效手段,对功率器件焊接界面健康状态的评估给予了有力支撑。