共 1条 温度-压力协同补偿
论文

基于神经网络的高寒地区CF4和SF6/CF4检测

发布日期:2024-05-24

高寒地区须携带多台仪器以满足3种不同量级SF6气体中CF4气体浓度的检测需求,现场运维效率低且仪器购置成本高。为此,首先设计了一种基于热释电检测技术的SF6气体中CF4气体浓度检测仪器,可自动选择不同的放大电阻以实现多量程切换。然后提出了BP和PSO-BP 2种神经网络温度-压力协同补偿模型,并通过搭建高效模拟实验平台为模型预测提供数据支撑,预测结果表明,PSO-BP神经网络优于BP神经网络。最后将PSO-BP神经网络温度-压力协同补偿模型内置于多量程检测仪器CF4气体浓度检测仪器。模拟实验结果表明,该检测仪器在不同温度和压力下,小量程和大量程检测误差和重复性分别不超过±2%和1.6%,混合比量程下误差和重复性分别不超过±0.5%和0.2%,对高寒地区电网运维检修具有重要作用。

热点资讯

1

《电力行业关键设备供需统计分析报告2023》上新了!

2

2023年变电智能运检优秀论文征集

3

EPTC双周刊

4

“EPTC智巡榜”年度优秀企业征集

5

“双碳”目标下的低压智能配电台区应用设计

6

2023年EPTC大事记

7

电力绝缘子40年技术回顾与展望——制造篇

8

关于举办2023年(第六届)电力信息通信新技术大会暨数字化发展论坛的通知

9

电线电缆产品质量国家监督抽查实施细则(2022年版)发布

10

新型电力系统中抽水蓄能定位与发展前景