广东电网配电自动化开关运行情况介绍
以图表形式直观展示了断路器、组合电器、高压开关柜的台账数(率)、故障数(率)、缺陷数(率)、运行年限分布情况,总结归纳了现目前主要存在的六大问题并给予相对应的管控策略。第一,针对隐蔽性较强的GIS内部载流回路过热短路故障问题,应开展对GIS内部过热检测技术研究,试点进行二维码定点定位测温;第二,对于继电器老化引发的开关误跳,可以改进二次接线回路设计,保证在断路器在非全相状态时间内才启动断路器跳闸回路跳闸,从而保证设备正常运行;第三,机构引发的断路器误动或拒动影响系统安全的情况下,可收集机械测试数据,开展机构状态的专项评估,研究并提出机构的运维检修策略;第四,多重雷击引发的断路器击穿问题,可通过研究多重雷击下断路器的运行工况,推进IEC工作组修编断路器多重雷击下技术要求和试验方法;第五,针对隔离开关机构、载流缺陷多的问题,可研究模块化、标准化和智能化机构,开展隔离开关的检查性操作和日常巡视工作的技术监督;第六,面对断路器爆裂风险,可制定滤波器断路器的反措,提高断路器的技术参数和试验要求,加强断路器厂内装配工艺环节的技术监督。
基于SVPWM补偿优化的三电平NPC并网逆变器容错控制
为保证并网系统中三电平中点箝位(neutral point clamped,NPC)型并网逆变器单相桥臂短路或断路故障后持续运行,提出一种基于空间矢量脉宽调制(space vector pulse width modulation,SVPWM)的优化补偿型低共模电压容错控制策略。首先,通过分析故障后八开关三相逆变器(eight switch three phase inverters,ESTPI)拓扑开关状态对应的共模电压大小,确定参考电压矢量合成规则;然后,通过一个基波周期内中点电流情况分析中点电位波动机理,进而对空间矢量合成进行调节补偿;最后,设计低通滤波器和滞环控制器进一步对补偿进行优化调整,保证并网电流质量的同时有效抑制了直流母线中点电位偏移。仿真结果表明,该容错控制策略能够实现三电平NPC并网逆变器单相桥臂故障后并网系统的稳定可靠运行,每个基波周期有三分之一时间的共模电压得到改善,优化补偿后的并网电流质量显著提高,且在并网电流突变时具备良好的控制特性。
基于低频扰动的多分布式电源孤岛检测方法
针对被动法检测盲区较大和主动法易产生稀释效应的问题,提出基于主、被动结合的多分布式电源(distributed generation, DG)孤岛检测方法。首先,该方法利用有源电力滤波器(active power filter, APF)实现无功功率扰动,即通过扰动APF的q轴参数来控制其输出频率为2 Hz的无功功率,以扰动孤岛频率周期性波动。然后,利用小波分解和小波重构算法提取频率信号中的低频分量。最后,利用快速傅里叶变换(fast fourier transform, FFT)算法计算2 Hz低频分量的幅值并判断是否越限,以实现多DG孤岛检测。Matlab/Simulink建模仿真结果表明:该方法能够有效地避免稀释效应,实现多DG孤岛检测。
交流滤波器保护装置通用技术条件
滤波器及并联电容器装置检修导则
非理想条件下并联有源电力滤波器的无源超螺旋二阶滑模控制策略
电力系统运行在非理想状态时,容易产生短暂的电压波动,此时并联有源电力滤波器(shunt active power filter, SAPF)采用无源控制策略无法高效、精确地调节电能质量,而常规滑模控制又容易引起抖振。针对上述情况,将无源控制和抗干扰能力更强的超螺旋二阶滑模控制相结合,提出了一种无源超螺旋二阶滑模控制策略。首先,根据有源电力滤波器的数学模型建立基于正负序分离的欧拉−拉格朗日模型;其次,对系统的模型进行了无源性分析,且根据其无源性设计了无源控制器,同时采用超螺旋二阶滑模控制对无源控制器进一步优化,提高了系统整体的鲁棒性和抗干扰能力;最后,在理想状态和负载突变、负载不平衡、电网电压不平衡、单相电压突变4种非理想状态下,通过仿真实验验证了无源超螺旋二阶滑模控制策略的有效性和优越性。
浙江电科院攻克高压有源滤波技术难题,研发并应用高压有源滤波器
近日,国网浙江省电力有限公司电力科学研究院电能质量监测人员在嘉兴等地给电网加装谐波监测仪器,监测高压有源滤波器投运后区域电网的谐波变化。高压有源滤波器装设于华能嘉兴2号海上风电场,投运后风电场并网线路5次谐波电流降低了90%以上,风电场及周边电网电能质量明显改善。这标志着我国已掌握面向海上风电电能质量治理的高压有源滤波技术。
基于充电站谐波特性的频率自适应有源电力滤波控制策略
随着分布式新能源在充电站的接入,源荷的随机特性使电网基频发生波动,进一步加剧站内谐波电流越限风险。对此,提出了一种频率自适应的有源电力滤波谐波检测与跟踪策略。首先,设计了一种改进式广义积分器与延时相消相结合的混合滤波器结构,提高原有广义积分器的滤波性能和动态响应能力,并可消除直流偏置及不平衡分量的影响。其次,通过引入前馈补偿的改进锁相环消除频率波动引起的误差,实现频率自适应谐波检测。最后,基于频率波动导致的谐波跟踪误差,采用结合无限脉冲响应滤波器的快速重复控制,可依据检测频率实现动态调整。仿真和实验结果表明,所提出的控制策略在充电负荷侧可稳定地检测电网频率。且在频率波动的工况下具有较优的谐波补偿能力,在32 ms实现对谐波电流的补偿,治理后电流谐波畸变率下降到5%以下,对不同工况下的充电站具有通用性。
智能电网和电动汽车的发展综述
全球经济的低碳化发展,对汽车行业和电力行业都提出了新的要求,在汽车行业的变革就是新能源汽车,而电力行业的变革则是智能电网,随着信息产业的快速发展,今后的电动汽车和智能电网将会实现高度的信息化网络化互动化,两者有机的结合将会给人们带来一种新的能源消费方式。结合大量资料,认识到大量电动汽车在充电过程中,不仅会加剧电网系统的峰谷差,同时还会产生大量谐波分量污染电网。对于电动汽车充电过程产生谐波对电网的影响,可以选用PWM新式整流充电设备、加装滤波器、以及优化充电机的投入间隔控制策略等技术手段加以治理和控制,进而实现电动汽车充电与电网稳定运行的安全互动。