部分可观测条件下的配电网数据驱动最优潮流模型
电力系统最优潮流计算是典型的非线性非凸问题,线性化潮流模型主要用于将原始最优潮流问题转化为凸优化问题。配电网覆盖范围广,设备众多,模型参数维护困难,已有的基于数据驱动的线性化潮流模型多基于完备的系统量测数据,而实际中考虑经济性安装的测量单元,无法覆盖所有设备,系统量测通常是部分可观测的。为解决量测的部分可观测性问题,提出一种数据驱动线性潮流模型,并基于此构建基于数据驱动的线性化最优潮流模型,该模型对量测中的不良数据具有鲁棒性。通过对不同部分可观测场景的测试,验证了所提模型的有效性。
基于改进凸松弛的新能源电网概率最优潮流快速计算方法
现有概率最优潮流计算侧重于概率计算方法的设计和改进,难以从本质上提高概率最优潮流的计算效率。为此,以交直流新能源电网为研究对象,考虑风电、光伏发电的不确定性,建立交直流互联新能源电网概率最优潮流模型。首先,提出一种改进凸松弛技术处理非线性非凸潮流方法,将其转化为凸规划形式下的概率最优潮流模型;其次,利用Nataf变换处理非正态分布随机变量间的相关性,进而采用结合拉丁超立方采样技术的蒙特卡罗模拟法(monte carlo simulation,MCS)进行求解以降低MCS的计算量;最后,通过改进的IEEE 39节点、118节点以及500节点系统验证所提方法的有效性。
基于自适应高斯混合模型的含高渗透率分布式光伏电力系统风险评估
高渗透率分布式光伏(distributed photovoltaic, DPV)的接入增加了电力系统的运行风险。针对出力分布呈现形态复杂的特征,首先,提出一种基于改进近邻传播聚类的自适应高斯混合模型,优化了分布式光伏联合出力概率拟合迭代过程。然后,提出基于改进三阶多项式正态估计过程的Nataf变换方法,结合半不变量和Cornish-Fisher级数展开,实现分布式光伏出力相关性条件下的概率潮流计算。最后,采用电压越限和线路重过载指标计算电力系统运行风险。基于修改的IEEE 14节点电力系统,对不同分布式光伏渗透率的接入场景进行仿真。以蒙特卡洛模拟作为对比,结果表明所提方法在电网状态变量的概率分布计算上具有更高的精度,并验证了评估结果能够有效反映不同分布式光伏渗透率对电力系统风险水平的影响。
考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略
电-氢能源系统(IEHS)的合理规划对能源结构转型具有重要意义,充分利用氢储能的可移动特性可降低IEHS综合成本,提出一种考虑氢能储运特性的配电网集群划分与氢能系统规划策略。首先,将氢能系统拆分为多个氢能子系统(HES),建立多个HES之间的气氢拖车交通运输及储运成本模型;其次,基于电力-交通网架结构与新能源分布情况提出配电网集群划分方法;最后,根据集群划分结果,建立HES双层选址定容模型,该模型以IEHS年综合成本最低为目标,分层解决单个集群内HES的容量配置问题、各集群内部HES选址定容及气氢拖车配置问题。结果表明:提出的策略可以减小氢能储运压力、降低IEHS综合成本,提升风、光消纳水平,加快系统潮流计算迭代收敛速度。
考虑平衡端点相位不对称及光伏接入的低压配电网三相潮流模型
考虑到光伏逆变电源接入低压配电网的多样接入方式和复杂控制策略,建立了光伏逆变电源的三相电压与功率相对于中性点的控制模型。在此基础上,进一步提出了一个综合考量平衡端点相位不对称性以及光伏逆变电源接入因素的低压配电网三相潮流计算模型。为了验证该模型的有效性和准确性,在经过修正的IEEE 13节点测试系统上进行了仿真实验。仿真结果表明:所构建的模型能够精确、高效地计算包含光伏逆变电源在内的低压配电网三相潮流,为低压配电网的规划与运行提供了有力的理论支持和技术手段。
考虑特高压直流输电影响的省间电力现货市场协调交易方法
针对直流输电对跨省潮流模型的影响,提出了一种考虑特高压直流输电影响的省间电力现货市场(以下简称“省间市场”)协调交易方法。将省间市场展开过程拆分为省内代理报价曲线模型和省间市场协调交易模型,采用交-直流解耦的方法进行省间及省内的潮流计算。省内代理报价曲线模型以省内机组发电量/负荷需求为决策变量,通过区域等效模型得到省内机组/负荷参与省间市场的代理报价曲线。省间市场协调交易模型以省间市场交易值为决策变量实现省间市场出清,通过ADMM(交替方向乘子法)实现协调交易的分布式转化,避免交易过程中泄露省内机组信息和网络拓扑信息。算例表明,该方法实现了省间市场综合收益最大化,保障了信息隐私安全。
含能量路由器的交直流混合配电网潮流计算
能量路由器(energy router,ER)作为新兴电力电子设备,可以实现电能在电力系统中的灵活分配。分析ER对系统的影响,研究以ER为配电枢纽的交直流混合配电网潮流计算方法,对实现配电网的优化运行具有重要意义。文中首先基于改进交替迭代法建立ER的稳态潮流模型,并对ER直流端口采用下垂控制策略,结合传统解耦法,提出一种适用于含ER的配电网交直流解耦迭代潮流计算方法。以含有多个ER的IEEE 14节点和IEEE 69节点配电系统为算例进行仿真计算,验证所提方法的正确性与收敛性。为分析ER对系统运行的影响,对不同场景下IEEE 69节点测试系统进行仿真计算,证明ER在系统中可以支撑节点电压,减小系统运行损耗。
基于数据物理融合驱动配电网三相线性化潮流及线损分析应用
分布式电源规模化并网引入了下垂控制等非光滑本地控制约束,易导致传统基于前推回代法的潮流计算方法收敛失败,且由于分布式电源并网改变系统潮流方向,导致传统等值电阻法、压降法等理论线损计算方法不再适用。为解决上述问题,提出计及有载调压变压器调压、分布式光伏下垂控制的光滑化模型,构建了基于数据物理融合驱动的三相配电网线性化理论线损快速计算模型。在传统基于稳态运行特性线性化、一阶泰勒展开线性化的基础上,利用偏最小二乘法补偿线性化误差。相比纯物理驱动线性化,在负荷重载条件下仍具有较高精度;相比于纯数据驱动线性化,能够保留支路拓扑信息,适用于开关状态变化场景。所提模型仅对线性化误差进行拟合补偿,在保证线性化精度的前提下,极大地提高了潮流模型的收敛性与计算效率,且能够适应不同负荷水平实现精确误差补偿。基于实际42节点三相配电网系统仿真,验证了所提模型具有较高精度,且能够实现配电网理论线损鲁棒、快速计算。