基于态势感知的高渗透率电动汽车接入电网后电压调整策略
随着电动汽车使用量增加,区域配电网在高渗透率电动汽车接入配电网后会出现节点电压越限问题。基于态势感知技术,提出区域配电网内无功补偿设备以及电动汽车充电站联合参与的电压调整策略,通过构建二级调压模式确保配电网的电压状态。首先,在态势觉察阶段收集电动汽车状态、电网运行状态以及电动汽车充电站状态等信息;其次在态势理解阶段利用态势觉察阶段收集到的信息进行高渗透率电动汽车接入电网后模拟构建综合成本最小目标函数;然后在态势预测阶段根据电动汽车充电需求、电动汽车充电站信息预测高渗透率电动汽车接入电网后配电网电压偏差,基于潮流断面建立全局电气距离矩阵对预测电压修正,确认电网预测电压偏差;最后在利导阶段引入配电网电压偏差指标确定配电网电压偏离程度同时考虑配电网调压方式,对于不同程度的电压偏差确定配电网二级调压控制策略。通过IEEE 30节点系统进行仿真分析,验证了所提方法能够有效解决高渗透率电动汽车接入电网后电网电压越限问题。
基于分布式共识协同的光伏逆变器电压控制策略研究
为了解决大规模分布式光伏接入配电网导致光伏并网点出现电压越限问题,提出了一种基于分布式共识协同(distributed consensus collaboration, DCC)的光伏逆变器电压控制方法。光伏逆变器电压控制采用基于功率调节的下垂控制模式,利用下垂控制调节光伏的有功功率与无功功率,实现对光伏并网点电压的控制。分布式协同共识是将接入系统的光伏有功功率输出与光伏最大输出跟踪比作为状态变量,通过分布式共识协同算法实现下垂控制启动参数的调整和光伏逆变器之间的电压协同控制。通过一个含分布式光伏的真实馈线系统进行算例验证,基于德国DIgSILENT软件进行仿真。结果表明,所提电压控制方法能有效抑制光伏并网点的电压越限问题,并在电压调节过程中降低光伏有功功率出力的削减,提升光伏逆变器的无功功率调节量。
考虑运行状态信息的综合能源系统图强化学习优化调度
“双碳”背景下,异质能源的耦合加剧迫使综合能源系统(integrated energy system, IES)拓扑朝着更复杂、更灵活的方向不断演变。然而,现有优化调度方法对非欧网络拓扑知识及其异质潮流约束考虑不足。针对这一问题,提出一种基于图强化学习的综合能源系统优化调度方法。首先,基于图理论在保证节点多样状态的情况下,将异质能源网络拓扑转换为网络图模型。其次,通过建立基于真实图映射的状态-动作-奖励的框架,利用图强化学习的方法学习图模型的非欧拓扑信息,将异质潮流知识加入系统节点运行状态,从而实现IES的安全优化调度。最后,利用某工业园区的真实数据进行仿真验证,所提方法相对于传统方法有效缓解了节点电压越限的问题。结果表明,所提方法能够在考虑IES真实拓扑运行状态信息和异质潮流安全的情况下实现IES的优化调度。
含高渗透率分布式光伏的配电网电压越限解决方法研究综述
近年来,随着我国能源转型的不断深入、光伏发电技术的逐渐成熟以及发电成本的逐步降低,分布式光伏在配电网中的占比日益提高,配电网的电能质量问题愈发显著,如电压越限、电压不平衡、线路过载、闪变以及谐波超标等问题,其中,电压越限是限制分布式光伏接入容量的主要因素。该文首先总结了目前常用的含高渗透率分布式光伏的配电网电压调节方法,在此基础上,分别对每种电压调节方法进行了详细介绍。最后,对比分析了各种电压调节方法的优劣性,并对未来含高渗透率分布式光伏的配电网电压调节方法提出相关建议。
考虑短时波动的分布式光伏逆变器鲁棒集中−就地控制策略
针对光伏逆变器集中控制对源、荷短时波动考虑不足的问题,提出一种鲁棒集中–就地控制策略。首先,以网损和弃光量加权最小为目标,建立逆变器有功、无功集中控制模型;针对控制间隔内短时波动导致的电压越限和潮流波动,以集中控制结果为参考,通过动态参数就地控制策略平抑波动,提出无功出力–有功削减–斜率参数的三参数集中–就地控制模型。其次,采用区间模型建模短时波动,以极端波动场景的电压偏差最小为目标,建立就地控制策略鲁棒优化模型。最后,基于二阶锥规划和灵敏度分析,提出控制策略的求解方法,通过算例验证模型的有效性,并分析波动性、渗透率、逆变器容量对控制的影响,提升主动配电系统的运行安全性和经济性。
应对岸上故障的海上风电多端柔直系统协调控制策略
针对海上风电多端柔直系统岸上交流电网故障时的盈余功率问题,提出一种采用能量控制的多个海上换流站与风电机组的协调控制策略。在故障期间,部分海上换流站先启动能量控制,根据直流电压的变化抬升能量参考值,吸收直流系统中的盈余功率。剩余海上换流站对直流电压进行预测,当直流电压预测值超过限值后,剩余海上换流站启动能量控制吸收盈余功率。海上换流站在吸收盈余功率的同时对风电机组采用降压控制,根据换流站储能的增加情况降低风机侧交流电压参考值。风电机组网侧换流器根据交流电压的变化调节d轴电流参考值,减少输送到多端柔直系统的有功功率,避免多端柔直系统的直流电压越限。最后,在PSCAD/EMTDC中对不同类型的故障进行仿真,验证了所提协调控制策略的有效性。
含分布式光伏的配电网双层协调电压优化方法
当分布式光伏进入极高比例渗透阶段时,配电网电压越限的问题会更加突出。常用方法是调用配电网内多种可调资源改善电压分布,但较少考虑实际工程中馈线层与变电站之间的信息交互。为此,文中提出一种考虑馈线层与变电站双层协调的配电网电压优化方法。在馈线层建立以线路损耗最小为目标的最优潮流模型,经二阶锥松弛求得馈线层首端电压和注入功率,并反馈给上层变电站;在变电站建立以低压侧母线电压调整量最小为目标的调压模型,将调整后的首端电压返回馈线层,更新潮流分布并获得可调资源的调度计划;最后依据扩展的IEEE 33节点配电系统算例,利用Cplex求解,验证了该优化方法在解决配电网电压越限问题的基础上,可以更好地控制电压偏差、减少设备切换次数、提高系统运行的经济性。
基于矩差分析的配电网分布式储能优化配置
随着“双碳”目标的提出,未来配电网中会面临极高比例的光伏等新能源接入,电压越限、潮流返送等问题频繁发生。在充分利用配电网已有调压手段和无功补偿的基础上,由于分布式光伏装机容量太大无法就地消纳,光伏大功率返送导致节点电压越上限。针对此问题,提出了一种基于矩差分析的分布式储能优化配置方法。提出了光伏矩和负荷矩的概念,进而提出了矩差的概念,对矩差和节点电压之间的关系进行了公式推导和理论分析,得出了配电网节点电压与矩差之间的关联关系,并详细阐述了光伏矩和负荷矩的计算方法。在此基础上,提出了一种基于矩差分析的配电网储能优化配置方法,以发生光伏返送时保证配电网所有节点不发生电压越上限为目标。IEEE 33节点配电网系统算例表明,与传统的智能优化算法相比,所提方法直接确定储能安装位置,计算效率高,计算结果准确,工程实用性强。
基于自适应高斯混合模型的含高渗透率分布式光伏电力系统风险评估
高渗透率分布式光伏(distributed photovoltaic, DPV)的接入增加了电力系统的运行风险。针对出力分布呈现形态复杂的特征,首先,提出一种基于改进近邻传播聚类的自适应高斯混合模型,优化了分布式光伏联合出力概率拟合迭代过程。然后,提出基于改进三阶多项式正态估计过程的Nataf变换方法,结合半不变量和Cornish-Fisher级数展开,实现分布式光伏出力相关性条件下的概率潮流计算。最后,采用电压越限和线路重过载指标计算电力系统运行风险。基于修改的IEEE 14节点电力系统,对不同分布式光伏渗透率的接入场景进行仿真。以蒙特卡洛模拟作为对比,结果表明所提方法在电网状态变量的概率分布计算上具有更高的精度,并验证了评估结果能够有效反映不同分布式光伏渗透率对电力系统风险水平的影响。