基于EEMD-IWOA-TCN的电网短期负荷预测
为提高较少输入特征下对电网负荷的预测精度,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)、改进鲸鱼优化算法(improve whale optimization algorithm,IWOA)和时域卷积网络(temporal convolutional network,TCN)相结合的电网负荷预测方法。首先,使用EEMD对原始序列进行分解,得到具有较高细粒度的负荷分量序列;其次,采取相关性分析对分量进行融合,对融合后的分量序列分别建立TCN预测模型;然后,使用IWOA对TCN内部的超参数进行优化,提升模型训练速度和预测性能;最后,将各分量序列的预测值进行累计,输出最终负荷预测值。实证分析表明:所提方法具有较高的预测精度和良好的鲁棒性。
考虑风电不确定性的短期合同电量协同分解优化模型及算法
现有合同电量分解方法大多没有考虑风电不确定性的影响及未与发电计划协同优化,导致到期合同电量往往未能够得到充分执行。提出一种考虑风电不确定性和检修计划影响的短期合同电量协同分解优化新模型及算法,使得到期时合同电量能够公平合理地充分执行。首先,以发电成本、合同偏差成本及风电品质风险成本最小为目标,构建短期合同电量分解到天的优化模型及算法,得到每天预计完成的合同电量。然后,基于日前及日内短期及超短期负荷及风功率预测信息,分别构建考虑合同完成度的日前鲁棒发电计划及日内重调度优化模型及算法,在保证对负荷尽可能供电及系统安全约束满足的前提下,实现风功率充分消纳及每日合同电量的充分执行。在此基础上,对每日未完成的合同电量,通过后续日合同电量的滚动修正进一步加以实现,从而保证到期时短期合同电量能够得到充分执行。算例证实了该模型及算法的可行性和先进性。
基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测
多用户电力负荷预测是指根据历史负荷数据对多个用户或区域的电力负荷进行预测,可使电网企业掌握不同用户或区域的电力需求,以便更好地开展规划和实施调度优化等。然而由于各用户呈现出复杂多样的用电行为,采用传统方法难以进行统一建模并实现快速准确预测。为此,构建了一种基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测模型。首先,采用DTW K-medoids法进行用户负荷数据聚类,利用动态时间弯曲(dynamic time warping,DTW)计算数据间的距离,取代K-medoids算法中传统的欧氏距离度量方式,以改善多用户负荷聚类的效果;在此基础上,为充分表征负荷历史数据的长短期时序依赖特征,建立了一种基于变分模态分解(variational mode decomposition,VMD)-多分支神经网络模型的并行预测方法,用于多用户短期负荷预测;最后,使用某地区20个用户365天的负荷数据进行聚类、训练和测试实验,结果显示该模型结果的平均绝对误差和均方根误差等指标均较对比模型有较大幅度降低,表明该方法可有效表征多类用户的用电行为,提升多用户负荷预测效率和精度。
基于多策略改进金豺算法优化LSTM的短期电力负荷预测
针对长短期记忆(long short term memory, LSTM)神经网络存在短期负荷预测精度低和稳定性差的问题,提出一种基于多策略改进金豺(improved golden jackal optimization, IGJO)算法优化LSTM的短期电力负荷预测模型。首先融合凸透镜成像反向学习策略,探索更好的初始解位置;引入Sigmoid函数改变逃逸能量,平衡探索和开发阶段;融合鲸鱼优化算法的螺旋包围机制,增强探索能力,提高收敛精度。然后,引入LSTM神经网络,利用IGJO算法优化LSTM的超参数,并建立IGJO-LSTM短期电力负荷预测模型。最后,使用河南某地区的实际电力负荷数据验证IGJO-LSTM短期负荷预测模型。实验结果表明,所提预测模型在工作日和周末不同时刻的电力系统短期负荷预测结果与实际负荷较接近。相比于传统预测方法,所提预测模型具有更高的精确度和稳定性,并具有一定的实际应用潜力。
河北南网电力现货市场完成首轮调电试运行
6月8日,国网河北省电力有限公司调度控制中心完成了河北南网电力现货市场优化方案,进一步提升了超短期负荷预测和新能源出力预测的准确率,同时升级了自动发电控制(AGC)调用策略。此前,河北南网电力现货市场完成了首轮调电试运行,实现了电力现货交易与电力生产运行有序衔接。本月底,河北南网电力现货市场将进行第二轮试运行。
考虑天气特征与多变量相关性的配电网短期负荷预测
针对配电网短期负荷预测受到众多复杂天气特征等随机不确定性因素影响,以及传统预测模型难以有效分析不同特征序列之间的相关性等问题,提出一种考虑天气特征与多变量相关性的配电网短期负荷预测方法。首先,提出多变量快速最大信息系数(multi-variable rapid maximal information coefficient, MVRapidMIC)提取相关性高的天气特征序列。其次,引入探索性因子分析法(exploratory factor analysis, EFA),对高相关性特征序列进行降维处理。最后,将维度分段(dimension-segment-wise, DSW)机制和两阶段注意力(two-stage attention, TSA)机制与Informer模型结合,提高预测模型对不同特征序列相关性的分析能力。通过DTU 7K 47节点实际配电网的历史负荷数据开展仿真测试,验证所提方法的预测精度、鲁棒性和时效性。
基于集群辨识和卷积神经网络−双向长短期记忆−时序模式注意力机制的区域级短期负荷预测
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)−双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)−时序模式注意力机制(temporal pattern attention, TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。
电网短期和超短期负荷预测技术规范
基于改进Q学习算法和组合模型的超短期电力负荷预测
单一模型在进行超短期负荷预测时会因负荷波动而导致预测精度变差,针对此问题,提出一种基于深度学习算法的组合预测模型。首先,采用变分模态分解对原始负荷序列进行分解,得到一系列的子序列。其次,分别采用双向长短期记忆网络和优化后的深度极限学习机对每个子序列进行预测。然后,利用改进Q学习算法对双向长短期记忆网络的预测结果和深度极限学习机的预测结果进行加权组合,得到每个子序列的预测结果。最后,将各个子序列的预测结果进行求和,得到最终的负荷预测结果。以某地真实负荷数据进行预测实验,结果表明所提预测模型较其他模型在超短期负荷预测中表现更佳,预测精度达到98%以上。
基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型
精准的电力负荷预测有利于保障电力系统的安全、经济运行。针对现行预测算法存在的预测准确度低、模型耗时长等问题,提出一种基于随机森林(random forest,RF)算法和粗糙集理论(rough set theory,RST)的改进型深度学习(deep learning,DL)短期负荷预测模型(RF-DL-RST)。该模型首先基于历史数据,利用随机森林算法提取影响负荷预测的关键特征量;然后将关键特征量和历史负荷值作为深度神经网络的输入、输出项进行训练,并通过粗糙集理论修正预测结果。最后,通过算例进行仿真验证,结果表明,该模型的预测准确度比单一的深度学习模型及不进行预测修正的模型更高。