变电站高压室环境管控系统
以前变电站高压室内的35kV开关柜通常采用小型化设计,只有1.2米宽,柜内导体间的最小绝缘距离只有230mm,不满足2014版《十八项反措》300mm的要求。虽然生产厂家在柜内加装了绝缘隔板或绝缘护套,但是绝缘击穿故障还是经常发生。目前,山东公司此类35kV开关柜问题高达3747面,存在较大设备安全隐患,严重影响电网安全运行。 通过对近5年的开关柜事故统计分析,87%的35kV开关柜绝缘击穿是由温度、湿度、污秒三个关键要素导致的。因为高压室与外界密封性较差,导致户外的潮气和灰尘进入开关柜内,致使绝缘件受潮脏污,造成绝缘强度降低,发生闪络击穿故障,严重时还会引起母线全停、变压器出口短路,甚至开关柜整组烧毁。 如果能对开关柜高压室的空气环境进行管控,避免开关柜脏污受潮,就能杜绝此美事故。解决方案就是控制高压室的环境因素-——温度、湿度、污秒。然而现在高压室的设计规范仅有温控的通风机这一项环境控制设备,潮气和灰尘经过通风口进入高压室内,无法有效控制运行环境。因此,巫需研制一套高压室环境控制系统,能够在变电站高压室内规模化安装,实时监测、控制高压室内环境情况,将高压室内温湿度始终控制在允许范围内,有效隔绝灰尘,提高开关柜设备电气绝缘强度水平,杜绝因开关柜设备绝缘击穿导致的故障,确保变电站安全运行。
GIS中典型 局部放电检测有效性
在G1S制造、安装、调试过程中,不可避免地出现导体表面尖刺、自由导电微粒等局部电场集中造成的绝缘缺陷。该类绝缘缺陷在GIS设备运行及遭受过电压情况下可能导致异常放电,影响系统安全稳定运行。 2014年至2018年,国家电网公司投运的组合电器发生了47起绝缘故障,占比85.5%;其中由微粒起的绝缘击穿放电共计39起。 由于金属微粒导致的绝缘故障仍然是GIS设备可靠运行亟待解决的问题。 金属微粒按照出现的位置可分为导体附着微粒、绝缘界面附着微粒和自由导电微粒三类,下面分别论述工频局部放电试验对这三类缺陷的检测有效性。
空间电荷调制的油纸绝缘击穿机理研究
绝缘子
高压电缆终端头保护夹具
电缆终端头是电缆线路中最薄弱的环节及部位,通常是做好电缆头后再进行吊装。如果起吊不规范容易造成电缆机械损伤,如电缆外皮擦伤、电缆终端接头金属护套位移等情况。都会造成绝缘降低,从而引起绝缘击穿事故。 长期以来为解决目前技术的不足,本成果结合现有技术,从实际应用出发,提供为了解决上述问题,研制一种电力电缆终端头高空起吊保护夹具。主要包括主吊环、吊绳、帆布包、小吊环、电缆固定环(夹具内装有防滑和防磨胶皮,夹具为可调式,能够适用于10-35kV不同线芯的电缆)、旋紧把手(旋紧螺栓有松紧定值,即夹紧又不破坏电缆的外皮)七个部分组成。采用本保护夹具进行电缆终端头起吊安装时,先将制作好的电缆终端头套入保护夹具内,通过电缆固定环固定牢固,锁定旋紧把手,用夹具内的帆布把电缆终端头全部严实包裹来。起吊时将吊绳与下部的电缆固定环上的小吊环连接,实现了不直接将绳索栓于电缆终端头绝缘部分起吊,不损伤电力电缆绝缘部分。电缆终端头保护夹具通过将电缆终端头保护,实现电缆终端头高空的快速安装,提高了保护了电缆头的绝缘不受到损伤,消除因起吊电缆终端头不当造成的电缆绝缘事故,提高了电缆线路的供电可靠率
变电站局部放电快速检测与空间定位成套装置研发
绝缘故障是电力设备在运行中的最主要的可能故障之一,对运行设备进行局部放电检测和定位,可以有效避免绝缘击穿故障的发生,减少停电时间,提高检修效率。立项之初,变电站设备的局部放电检测和定位主要针对GIS、变压器、容性设备等具体单一设备进行,而对变电站全站的一次电气设备实施监测,需要在每一个设备上都安装局部放电监测装置,费用极高,使用效率低,维护工作量大。研制一种低成本、高可靠性、能够实现对全站高压电气设备的局部放电情况进行快速检测、定位的新型检测装置非常有必要。变电站站域局部放电快速检测与定位成套装置研发主要面临以下难题:(1)站域局放电磁波传播特性不清,缺乏对全站各类一次设备不同局放类型产生的特高频信号以及干扰电磁波信号的特征及传播特性研究;(2)局部放电检测灵敏度不足,需要设计满足全向、宽带、小型化、高灵敏度的特高频传感器;(3)局部放电检测定位精度不高,尤其在具有多个局放源和强电磁干扰的情况下,需要研究多源局放信号的分离与识别;(4)缺乏整套站域多源局放检测和监控定位系统。
超特高压换流变压器绝缘故障预防关键技术及应用
项目属于高电压技术领域。 超特高压换流变压器是直流输电系统的核心设备,其状态直接影响电网安全运行。在运换流变承受交直流复合电压、极性反转电压,绝缘设计与交流变显著不同,依靠交流变技术进行绝缘状态检测评估的局限性日益凸显,体现在换流变绝缘故障机理不明确、高纸板比例主绝缘评估准确性差、复杂电压下套管绝缘评估手段缺乏、局部放电性缺陷检测不灵敏。因此亟需研究超特高压换流变绝缘故障预防关键技术。 在国家自然科学基金项目支持下,项目开展了复合电压下油纸绝缘击穿特性、主绝缘电气无损检测评估、套管绝缘状态有功损耗评估、局放超声检测诊断四方面关键技术研究并实现工程应用。
一种基于归一化奇异谱熵的变压器绕组工作状态检测方法
电力变压器作为电能转换的一次设备,在电力系统中有着十分重要的地位,并被称为电力系统的心脏。变压器的安全稳定运行对电网的可靠性及稳定性具有重要意义。随着我国电网容量的不断增大,短路容量相应增加,变压器出口短路形成的冲击电流所产生的巨大电磁作用力,会对变压器绕组的机械强度和动稳定性构成严重威胁。若不及时对故障变压器进行维修,不仅会损害变压器,更会对电网的正常运行造成影响,甚至导致电力系统崩溃。 变压器突发短路故障时,其绕组内会流过较大短路电流,在漏磁场的作用下对绕组产生较大电动力,进而导致绕组发生松动或变形。现有研究表明,变压器绕组变形具有累积效应,若不及时发现并修复松动或轻微变形故障,则当绕组松动或变形积累到一定程度后,会使变压器的抗短路能力大幅下降,较易引发重大事故。同时,绕组的松动或变形还会导致线圈内部局部绝缘距离发生变化,使局部出现绝缘薄弱点。当遇到过电压时,绕组可能发生饼间或匝间短路,或者由于局部场强增大而引起局部放电,随着绝缘损伤部位的逐渐扩大,最终导致变压器发生绝缘击穿事故,进而进一步扩大事态。因此,在运行过程中,当变压器经历了外部短路事故或进行常规检修时,如何有效诊断变压器绕组是否存在松动,进而判断变压器是否需要进行检修处理是保障变压器安全运行的重要措施。 变压器绕组变形检测是目前变压器的常规试验项目之一,最常用的检测方法主要有两种:一是短路阻抗法,由于变压器的短路阻抗反映的主要是变压器绕组的漏抗,而变压器漏抗由绕组结构决定,一旦变压器绕组发生松动或变形,变压器的漏抗也会发生相应改变,因此,通过对变压器的短路阻抗进行检测可间接反映变压器绕组是否发生了松动或变形,但该方法灵敏度较低,故障检出率较低,只能在变压器线圈整体变形较为严重时得到较为准确的诊断结果。二是频响法,将变压器绕组视为分布参数网络,并在频域由传递函数描述其特性,当绕组发生局部机械变形后,其分布参数发生相应变化,进而改变网络传递函数,因此,通过分析变压器绕组的网络传递函数曲线可对网络电参数进行分析,从而推断出变压器绕组是否发生松动或变形,但该方法的频响波形较为复杂,对绕组状况进行判断需要较多经验,难以形成明确的定量判据。 若将变压器绕组看作一个机械结构体,则当绕组结构或受力发生任何变化时,都可以从它的机械振动特性变化上得到反映。因此,在变压器停电状态下,给变压器绕组注入频率和幅值已知的激励信号,则可通过测试变压器箱壁上的振动信号获取绕组的振动响应来对绕组的工作状态进行检测。与前述电气测量法相比较,只要绕组的机械特性(如结构变形、预紧力松动等)发生变化,都可以从它的机械振动特性变化上得到反映,从而大大提高了检测的灵敏度。
一种现场电缆振荡波局部放电精确检测的专用工具
该项目彻底解决了目前使用虎口夹钳进行振荡波局部放电试验,需拆、装电缆T型接头容易造成电缆应力锥位移、受损带来的局部放电导致电缆终端头绝缘击穿的问题,同时完全适用于电缆的各种连按方式,也彻底解决了测试困难,被测设备安全风险高和虎口夹钳的钳齿容易产生尖端放电带来电缆局部放电测试干扰量大,容易造成误判断的问题。成果进行电缆振荡波局部放电试验时不需要拆装电缆T型接头,弥补了电缆振荡波局部放电测试专用工具的空白,并且能够适应铜、铝排,不同尺寸铜鼻于,电缆T型头等不同连接形式的电缆终端,有效提高工作效率及工作质量,效果显著。
特高压GIL绝缘击穿时暂态电压时频特征分析
为研究特高压气体绝缘金属封闭输电线路在交接耐压试验和运行时绝缘击穿激发的暂态电压特征,利用在1100kV苏通GIL综合管廊工程安装的超宽频暂态电压监测系统,准确测量了GIL在耐压试验和运行时绝缘击穿所产生的暂态电压。分析了GIL在不同工况下典型绝缘击穿所产生暂态电压时域波形的持续时间、变化陡度以及幅值衰减特征。通过傅里叶变化分析了暂态波形的频域特征,发现特征频率与故障位置紧密相关。最后通过连续小波变换分析了暂态电压的时频特征,发现陡变电压的瞬时频率均超过了3MHz,可通过暂态电压的时频分布图准确判断GIL是否发生次生放电。通过对暂态电压时域和频域特征分析,有助于弄清GIL绝缘故障时暂态电压行波激发及传播特征,准确评估暂态电压对GIL的绝缘危害,提高特高压GIL运行的可靠性。
35kV XLPE电缆中间接头典型缺陷三维电场仿真分析
中低压电缆广泛应用于各种配电网,在安装运行过程中,电缆及其中间接头容易出现缺陷,对其绝缘造成破坏。为了研究不同缺陷对中间接头电场强度的影响,本文在SolidWorks中建立了 35kV XLPE 电缆本体和中间接头的三维物理模型,设计了电缆中间接头的气隙、杂质、割伤、划伤四种典型缺陷模型,并在CST Stdio三维电磁场软件中进行三维电场仿真,通过对比得出不同缺陷对电场强度的影响规 律。结果表明这四种缺陷都会导致不同程度的电场强度畸变,甚至导致绝缘击穿引发严重故障,为今后35 kV 电缆中间接头故障的预防及原因分析提供参考。