基于双分支并联的特征融合电能质量扰动分类方法
为了提高对电能质量扰动信号(power quality disturbance signal, PQDs)在受到噪声和异常数据干扰时的分类准确率,提出了一种双分支并联特征融合网络的PQDs分类方法。首先,采用一维残差神经网络和一维卷积神经网络两个分支进行特征提取。然后,通过特征融合模块将这些特征融合在一起。最终,通过分类模块对PQDs进行准确分类。相对于串联神经网络,所提方法融合特征向量,增强了特征的区分度,同时适用于并行计算,进一步提高了识别速度。仿真结果表明,所提方法在叠加信噪比为13 dB、15 dB和18 dB的PQDs分类任务中,识别率均超过95%,此外,该方法对异常数据的分类效果也具有一定的鲁棒性。